Nitrite is protective against renal ischemia/reperfusion injury (IRI); an effect due to its reduction to nitric oxide (NO). In addition to other reductase pathways, endothelial NO synthase (eNOS) may also facilitate nitrite reduction in ischemic environments. We investigated the role of eNOS in sodium nitrite (60 μM, 10 ml/kg applied topically 1 min before reperfusion)-induced protection against renal IRI in C57/BL6 wild-type (WT) and eNOS knockout (eNOS KO) mice subjected to bilateral renal ischemia (30 min) and reperfusion (24 h). Markers of renal dysfunction (plasma [creatinine] and [urea]), damage (tubular histology) and inflammation (cell recruitment) were elevated following IRI in WT mice; effects significantly reduced following nitrite treatment. Chemiluminescence analysis of cortical and medullary sections of the kidney demonstrated rapid (within 1 min) distribution of nitrite following application. Whilst IRI caused a significant (albeit substantially reduced compared to WT mice) elevation of markers of renal dysfunction and damage in eNOS KO mice, the beneficial effects of nitrite were absent or reduced, respectively. Moreover, nitrite treatment enhanced renal dysfunction in the form of increased plasma [creatinine] in eNOS KO mice. Confirmation of nitrite reductase activity of eNOS was provided by demonstration of nitrite (100 μM)-derived NO production by kidney homogenates of WT mice, that was significantly reduced by l-NMMA. l-NMMA was without effect using kidney homogenates of eNOS KO mice. These results support a role for eNOS in the pathways activated during renal IRI and also identify eNOS as a nitrite reductase in ischemic conditions; activity which in part underlies the protective effects of nitrite.

Role for endothelial nitric oxide synthase in nitrite-induced protection against renal ischemia-reperfusion injury in mice

CUZZOCREA, Salvatore;
2010-01-01

Abstract

Nitrite is protective against renal ischemia/reperfusion injury (IRI); an effect due to its reduction to nitric oxide (NO). In addition to other reductase pathways, endothelial NO synthase (eNOS) may also facilitate nitrite reduction in ischemic environments. We investigated the role of eNOS in sodium nitrite (60 μM, 10 ml/kg applied topically 1 min before reperfusion)-induced protection against renal IRI in C57/BL6 wild-type (WT) and eNOS knockout (eNOS KO) mice subjected to bilateral renal ischemia (30 min) and reperfusion (24 h). Markers of renal dysfunction (plasma [creatinine] and [urea]), damage (tubular histology) and inflammation (cell recruitment) were elevated following IRI in WT mice; effects significantly reduced following nitrite treatment. Chemiluminescence analysis of cortical and medullary sections of the kidney demonstrated rapid (within 1 min) distribution of nitrite following application. Whilst IRI caused a significant (albeit substantially reduced compared to WT mice) elevation of markers of renal dysfunction and damage in eNOS KO mice, the beneficial effects of nitrite were absent or reduced, respectively. Moreover, nitrite treatment enhanced renal dysfunction in the form of increased plasma [creatinine] in eNOS KO mice. Confirmation of nitrite reductase activity of eNOS was provided by demonstration of nitrite (100 μM)-derived NO production by kidney homogenates of WT mice, that was significantly reduced by l-NMMA. l-NMMA was without effect using kidney homogenates of eNOS KO mice. These results support a role for eNOS in the pathways activated during renal IRI and also identify eNOS as a nitrite reductase in ischemic conditions; activity which in part underlies the protective effects of nitrite.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1895981
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 61
social impact