BACKGROUND: Cyclins drive cell-cycle progression by associating with their kinase partners, cyclin-dependent kinases (CDK). We investigated cyclin D1/CDK6, cyclin E/CDK2 complexes, and the cell-cycle negative regulators p15 and p27 in an incisional skin wound model. METHODS: Wounds were produced on the back of female diabetic mice and their normoglycemic littermates. Animals were treated with polydeoxyribonucleotide (PDRN, 8 mg/kg/i.p.), an agonist of adenosine A2(A) receptors, or its vehicle daily. Granulation tissue proliferation by Ki67 immunostaining, cyclin D/CDK6 and cyclin E/CDK2 complexes, and p21 and p16 proteins (Western blot analysis), and the histologic changes were assessed at different days (3, 6, and 12 days after injury). RESULTS: Numerous Ki67 positive cells were observed at day 3 and day 6 in the granulation tissue of normoglycemic mice. Ki67 positive cells were fewer in diabetic than in normoglycemic mice. PDRN increased Ki67 positive cells in diabetic mice. Normoglycemic mice showed the greatest upregulation of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. Diabetic mice had a markedly lower expression of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. They also showed a greater expression of p15 and p27 at day 6. PDRN administration in diabetic mice increased cyclin D1/CDK6 and cyclin E/CDK2 expression and reduced p15 and p27 inhibitors at day 6 after injury; moreover, it improved the impaired wound healing at day 12. CONCLUSION: Our results suggest that adenosine A2(A) receptor activation by PDRN might represent a therapeutic strategy to overcome the diabetes-impaired cell-cycle machinery.

Activation of adenosine A2(A) receptors restores the altered cell-cycle machinery during impaired wound healing in genetically diabetic mice

ALTAVILLA, Domenica;SQUADRITO, Francesco;POLITO, FRANCESCA;IRRERA, NATASHA;CALO', Margherita;LO CASCIO, Patrizia;GALEANO, MARIAROSARIA;MINUTOLI, Letteria;MARINI, Herbert Ryan;BITTO, ALESSANDRA
2011-01-01

Abstract

BACKGROUND: Cyclins drive cell-cycle progression by associating with their kinase partners, cyclin-dependent kinases (CDK). We investigated cyclin D1/CDK6, cyclin E/CDK2 complexes, and the cell-cycle negative regulators p15 and p27 in an incisional skin wound model. METHODS: Wounds were produced on the back of female diabetic mice and their normoglycemic littermates. Animals were treated with polydeoxyribonucleotide (PDRN, 8 mg/kg/i.p.), an agonist of adenosine A2(A) receptors, or its vehicle daily. Granulation tissue proliferation by Ki67 immunostaining, cyclin D/CDK6 and cyclin E/CDK2 complexes, and p21 and p16 proteins (Western blot analysis), and the histologic changes were assessed at different days (3, 6, and 12 days after injury). RESULTS: Numerous Ki67 positive cells were observed at day 3 and day 6 in the granulation tissue of normoglycemic mice. Ki67 positive cells were fewer in diabetic than in normoglycemic mice. PDRN increased Ki67 positive cells in diabetic mice. Normoglycemic mice showed the greatest upregulation of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. Diabetic mice had a markedly lower expression of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. They also showed a greater expression of p15 and p27 at day 6. PDRN administration in diabetic mice increased cyclin D1/CDK6 and cyclin E/CDK2 expression and reduced p15 and p27 inhibitors at day 6 after injury; moreover, it improved the impaired wound healing at day 12. CONCLUSION: Our results suggest that adenosine A2(A) receptor activation by PDRN might represent a therapeutic strategy to overcome the diabetes-impaired cell-cycle machinery.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1902002
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 44
social impact