Several foodborne human pathogens, when exposed to harsh conditions, enter viable but nonculturable (VBNC) state; however, still open is the question whether VBNC pathogens could be a risk for public health, because, potentially, they can resuscitate. Moreover, cultural methods for food safety control were not able to detect VBNC forms of foodborne bacteria. Particularly, it has not been established whether food chemophysical characteristics can induce VBNC state in contaminating pathogen bacterial populations, especially in food, such as salads and fresh fruit juices, not subjected to any decontamination treatment. In this preliminary study, we intentionally contaminated grapefruit juice to determine whether pathogen bacteria could enter VNBC state. In fact, grapefruit juice contains natural antimicrobial compounds, has an average pH of about 3 and low content in carbohydrates. Such characteristics make grapefruit juice a harsh environment for microbial survival. For this purpose, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium ATCC 14028, Listeria monocytogenes ATCC 7644, and Shigella flexneri ATCC 12022, at two different inoculum sizes, have been used. Viability by the LIVE/DEAD BacLight Bacterial Viability kit and culturability by plate counts assay were monitored, whereas "resuscitation" of nonculturable populations was attempted by inoculation in nutrient-rich media. The data showed that L. monocytogenes lost both culturability and viability and did not resuscitate within 24 h independently on inoculum size, whereas E. coli O157:H7 was able to resuscitate after 24 h but did not after 48 h. Salmonella Typhimurium and S. flexneri, depending on inoculum size, lost culturability but maintained viability and were able to resuscitate; moreover, S. flexneri was still able to form colonies after 48 h at high inoculum size. In conclusion, entry into VBNC state differs on the species, depending, in turn, on inoculum size and time of incubation.

Viable but non-culturable state of food-borne pathogens in grapefruit juice: a study of laboratory

Nicolò M.;CARNAZZA, SANTINA;GUGLIELMINO, Salvatore
2011-01-01

Abstract

Several foodborne human pathogens, when exposed to harsh conditions, enter viable but nonculturable (VBNC) state; however, still open is the question whether VBNC pathogens could be a risk for public health, because, potentially, they can resuscitate. Moreover, cultural methods for food safety control were not able to detect VBNC forms of foodborne bacteria. Particularly, it has not been established whether food chemophysical characteristics can induce VBNC state in contaminating pathogen bacterial populations, especially in food, such as salads and fresh fruit juices, not subjected to any decontamination treatment. In this preliminary study, we intentionally contaminated grapefruit juice to determine whether pathogen bacteria could enter VNBC state. In fact, grapefruit juice contains natural antimicrobial compounds, has an average pH of about 3 and low content in carbohydrates. Such characteristics make grapefruit juice a harsh environment for microbial survival. For this purpose, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium ATCC 14028, Listeria monocytogenes ATCC 7644, and Shigella flexneri ATCC 12022, at two different inoculum sizes, have been used. Viability by the LIVE/DEAD BacLight Bacterial Viability kit and culturability by plate counts assay were monitored, whereas "resuscitation" of nonculturable populations was attempted by inoculation in nutrient-rich media. The data showed that L. monocytogenes lost both culturability and viability and did not resuscitate within 24 h independently on inoculum size, whereas E. coli O157:H7 was able to resuscitate after 24 h but did not after 48 h. Salmonella Typhimurium and S. flexneri, depending on inoculum size, lost culturability but maintained viability and were able to resuscitate; moreover, S. flexneri was still able to form colonies after 48 h at high inoculum size. In conclusion, entry into VBNC state differs on the species, depending, in turn, on inoculum size and time of incubation.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1902429
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 35
social impact