Lock-in and pulse phase infrared thermography measurement techniques have been exploited for quantitative assessment of subsurface defects in a reference specimen made of Plexiglas. Radiometric thermal images were post-processed using a contrast approach in the frequency domain, allowing defect depth to be resolved with a combined standard uncertainty of about 5% for thicknesses up to 3.6 mm. Conversely, significant radial heat diffusion next to the boundary of the discontinuities made accurate sizing of deeper subsurface defects more difficult, resulting in a combined standard uncertainty of about 17% for a 10 mm diameter flat-bottomed hole of 3.6 mm deep. The obtained results demonstrate the potentiality of active thermography as a fast, powerful contactless NDE measurement tool.
Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography
MONTANINI, Roberto
2010-01-01
Abstract
Lock-in and pulse phase infrared thermography measurement techniques have been exploited for quantitative assessment of subsurface defects in a reference specimen made of Plexiglas. Radiometric thermal images were post-processed using a contrast approach in the frequency domain, allowing defect depth to be resolved with a combined standard uncertainty of about 5% for thicknesses up to 3.6 mm. Conversely, significant radial heat diffusion next to the boundary of the discontinuities made accurate sizing of deeper subsurface defects more difficult, resulting in a combined standard uncertainty of about 17% for a 10 mm diameter flat-bottomed hole of 3.6 mm deep. The obtained results demonstrate the potentiality of active thermography as a fast, powerful contactless NDE measurement tool.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.