Xylem cavitation is a common occurrence in drought-stressed plants. Cavitation-induced embolism reduces xylem hydraulic conductivity (kxylem) and may lead to stomatal closure and reduction of photosynthetic rates. Recent studies have suggested that plants may compensate for kxylem loss through ion-mediated enhancement of the residual water transport capacity of functioning conduits. To test this hypothesis, field-grown laurel (Laurus nobilis L.) plants were subjected to mild drought stress by suspending irrigation. Drought treatment induced a significant increase in xylem embolism compared with control (well watered) plants. Xylem sap potassium concentration ([K+]) increased during the day both in control and water stressed plants. Midday values of sap [K+] were significantly higher in water stressed plants. The recorded increase in sap potassium concentration induced significant enhancement of residual kxylem when solutions with different [K+] were perfused through excised stems sampled in the field and measured in the laboratory. In planta measurements of stem hydraulic conductance revealed no change between water stressed plants and controls. Our data suggest that ion-mediated enhancement of residual kxylem buffered the actual loss of hydraulic conductance suffered by plants during the warmest hours of the day as well as under mild drought stress conditions

Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis L.

TRIFILO', Patrizia;RAIMONDO, FABIO;LO GULLO, Maria Assunta;
2011-01-01

Abstract

Xylem cavitation is a common occurrence in drought-stressed plants. Cavitation-induced embolism reduces xylem hydraulic conductivity (kxylem) and may lead to stomatal closure and reduction of photosynthetic rates. Recent studies have suggested that plants may compensate for kxylem loss through ion-mediated enhancement of the residual water transport capacity of functioning conduits. To test this hypothesis, field-grown laurel (Laurus nobilis L.) plants were subjected to mild drought stress by suspending irrigation. Drought treatment induced a significant increase in xylem embolism compared with control (well watered) plants. Xylem sap potassium concentration ([K+]) increased during the day both in control and water stressed plants. Midday values of sap [K+] were significantly higher in water stressed plants. The recorded increase in sap potassium concentration induced significant enhancement of residual kxylem when solutions with different [K+] were perfused through excised stems sampled in the field and measured in the laboratory. In planta measurements of stem hydraulic conductance revealed no change between water stressed plants and controls. Our data suggest that ion-mediated enhancement of residual kxylem buffered the actual loss of hydraulic conductance suffered by plants during the warmest hours of the day as well as under mild drought stress conditions
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1904263
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact