A model of suspensions of deformable polymeric chains in dilute solutions is proposed. The originality of the model lies in raising the relative motion of polymers with respect to the solvent to the status of independent variables, at the same level of such classical variables as global mass, mass fraction, temperature, and conformation tensor. Such an attitude is typical of extended irreversible thermodynamics. It is shown that the restrictions placed by the second law of thermodynamics leads to the various expressions of the constitutive and evolution equations governing the model. The use of Onsager's reciprocal relations and the criterion of frame indifference is also commented upon.

Thermodynamics of suspensions of polymeric chains in dilute solutions

PALUMBO, Annunziata;
2010-01-01

Abstract

A model of suspensions of deformable polymeric chains in dilute solutions is proposed. The originality of the model lies in raising the relative motion of polymers with respect to the solvent to the status of independent variables, at the same level of such classical variables as global mass, mass fraction, temperature, and conformation tensor. Such an attitude is typical of extended irreversible thermodynamics. It is shown that the restrictions placed by the second law of thermodynamics leads to the various expressions of the constitutive and evolution equations governing the model. The use of Onsager's reciprocal relations and the criterion of frame indifference is also commented upon.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1905470
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact