Thin silver films were deposited by pulsed laser ablation in a controlled Ar atmosphere and their SERS activity was investigated. The samples were grown at Ar pressures between 10 and 70 Pa and at different laser pulse numbers. Other deposition parameters such as laser fluence, target to substrate distance and substrate temperature were kept fixed at 2.0 J/cm2, 35 mm and 297 K. Film morphologies were investigated by scanning and transmission electron microscopies (SEM, TEM). Surface features range from isolated nearly spherical nanoparticles to larger islands with smoothed edges. Cluster growth is favored by plume confinement induced by background gas. After landing on the substrate clusters start to aggregate giving rise to larger structures as long as the deposition goes on. Such a path of film growth allows controlling the surface morphology as a function of laser pulse number and Ar pressure. These two easy-to-manage process parameters control the number density and the average size of the as-deposited nanoparticles. We investigated the influence of substrate morphologies on their surface enhanced Raman scattering properties. Raman measurements were performed after soaking the samples in rhodamine 6G aqueous solutions over the concentration range between 1.0 × 10 -4 and 5.0 × 10-8 M. The sensitivity of the film SERS activity on the surface features is put into evidence.

Synthesis by pulsed laser ablation in Ar and SERS activity of silver thin films with controlled nanostructure

D'ANDREA, CRISTIANO;NERI, Fortunato;
2011-01-01

Abstract

Thin silver films were deposited by pulsed laser ablation in a controlled Ar atmosphere and their SERS activity was investigated. The samples were grown at Ar pressures between 10 and 70 Pa and at different laser pulse numbers. Other deposition parameters such as laser fluence, target to substrate distance and substrate temperature were kept fixed at 2.0 J/cm2, 35 mm and 297 K. Film morphologies were investigated by scanning and transmission electron microscopies (SEM, TEM). Surface features range from isolated nearly spherical nanoparticles to larger islands with smoothed edges. Cluster growth is favored by plume confinement induced by background gas. After landing on the substrate clusters start to aggregate giving rise to larger structures as long as the deposition goes on. Such a path of film growth allows controlling the surface morphology as a function of laser pulse number and Ar pressure. These two easy-to-manage process parameters control the number density and the average size of the as-deposited nanoparticles. We investigated the influence of substrate morphologies on their surface enhanced Raman scattering properties. Raman measurements were performed after soaking the samples in rhodamine 6G aqueous solutions over the concentration range between 1.0 × 10 -4 and 5.0 × 10-8 M. The sensitivity of the film SERS activity on the surface features is put into evidence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1909978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact