One of the main problems in modelling multivariate conditional covariance time series is the parameterization of the correlation structure. If no constraints are imposed, it implies a large number of unknown coefficients. The most popular models propose parsimonious representations, imposing similar correlation structures to all the series or to groups of time series, but the choice of these groups is quite subjective. A statistical approach is proposed to detect groups of homogeneous time series in terms of correlation dynamics for one of the widely used models: the Dynamic Conditional Correlation model. The approach is based on a clustering algorithm, which uses the idea of distance between dynamic conditional correlations, and the classical Wald test, to compare the coefficients of two groups of dynamic conditional correlations. The proposed approach is evaluated in terms of simulation experiments and applied to a set of financial time series.

Identifying Financial Time Series with Similar Dynamic Conditional Correlation

OTRANTO, Edoardo
2010

Abstract

One of the main problems in modelling multivariate conditional covariance time series is the parameterization of the correlation structure. If no constraints are imposed, it implies a large number of unknown coefficients. The most popular models propose parsimonious representations, imposing similar correlation structures to all the series or to groups of time series, but the choice of these groups is quite subjective. A statistical approach is proposed to detect groups of homogeneous time series in terms of correlation dynamics for one of the widely used models: the Dynamic Conditional Correlation model. The approach is based on a clustering algorithm, which uses the idea of distance between dynamic conditional correlations, and the classical Wald test, to compare the coefficients of two groups of dynamic conditional correlations. The proposed approach is evaluated in terms of simulation experiments and applied to a set of financial time series.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1910169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact