Permanent functional deficits following spinal cord injury (SCI) arise from both mechanical injury and from secondary tissue reactions involving inflammation. The mitogen-activated protein kinases (MAPKs) play a critical role in cell signaling and gene expression. MAPK family includes three major members: extracellular signal regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), representing three different signaling cascades. Moreover, various studies have clearly shown that high-mobility group box 1 (HMGB1) protein is implicated as a putative danger signal involved in the pathogenesis of a variety of inflammatory conditions including autoimmunity, cancer, trauma and hemorrhagic shock, and ischemia-reperfusion injury. Recently, we have reported that the pineal secretory product melatonin exerts important anti-inflammatory effects in an experimental model of SCI induced by the application of vascular clips (force of 24 g) to the dura after a four-level T5-T8 laminectomy. However, no reports are available on the effect of melatonin on MAPK signaling pathways and HMGB1 expression in SCI. The aim of the present study was to evaluate whether the melatonin protective effect observed in SCI is related to the regulation of MAPK signaling pathways and HMGB1 in mice. In this study we demonstrate the efficacy of treatment with the melatonin in SCI in mice in reducing (a) motor recovery, (b) activation of MAPKs p38, JNK and ERK1/2, (c) tumor necrosis factor-α expression, and (d) expression of HMGB1. We propose that melatonin's ability to reduce SCI in mice is also related to a reduction in MAPK signaling pathways and HMGB1 expression.

Melatonin reduces stress-activated/mitogen-activated protein kinases in spinal cord injury

ESPOSITO, EMANUELA;GENOVESE, TIZIANA;CAMINITI, Rocco;BRAMANTI, Placido;MELI, Rosario;CUZZOCREA, Salvatore
2009-01-01

Abstract

Permanent functional deficits following spinal cord injury (SCI) arise from both mechanical injury and from secondary tissue reactions involving inflammation. The mitogen-activated protein kinases (MAPKs) play a critical role in cell signaling and gene expression. MAPK family includes three major members: extracellular signal regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), representing three different signaling cascades. Moreover, various studies have clearly shown that high-mobility group box 1 (HMGB1) protein is implicated as a putative danger signal involved in the pathogenesis of a variety of inflammatory conditions including autoimmunity, cancer, trauma and hemorrhagic shock, and ischemia-reperfusion injury. Recently, we have reported that the pineal secretory product melatonin exerts important anti-inflammatory effects in an experimental model of SCI induced by the application of vascular clips (force of 24 g) to the dura after a four-level T5-T8 laminectomy. However, no reports are available on the effect of melatonin on MAPK signaling pathways and HMGB1 expression in SCI. The aim of the present study was to evaluate whether the melatonin protective effect observed in SCI is related to the regulation of MAPK signaling pathways and HMGB1 in mice. In this study we demonstrate the efficacy of treatment with the melatonin in SCI in mice in reducing (a) motor recovery, (b) activation of MAPKs p38, JNK and ERK1/2, (c) tumor necrosis factor-α expression, and (d) expression of HMGB1. We propose that melatonin's ability to reduce SCI in mice is also related to a reduction in MAPK signaling pathways and HMGB1 expression.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1910227
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 52
social impact