A Lagrangian formalism is used to find steady-state solution of the Landau-Lifshitz-Gilbert-Slonczewski equation corresponding to the linear autonomous dynamics of a magnetic auto-oscillatory system subject to the action of a spin-polarized electric current. In such a system, two concurrent dissipative mechanisms, arising from the positive intrinsic dissipation and the negative current-induced one, take place simultaneously and make the excitation of a steady precessional motion of the magnetization vector conceivable. The proposed formulation leads to the definition of a complex generalized non-Hermitian Eigenvalue problem, both in the case of a macrospin model and in the more general case of an ensemble of magnetic particles interacting each other through magnetostatic and exchange interactions. This method allows to identify the spin-wave normal modes which become unstable in the presence of the two competing dissipative contributions and provides an accurate estimation of the value of the excitation threshold current.

Lagrangian Formulation of the linear autonomous magnetization dynamics in spin-torque oscillators

CONSOLO, Giancarlo;
2011-01-01

Abstract

A Lagrangian formalism is used to find steady-state solution of the Landau-Lifshitz-Gilbert-Slonczewski equation corresponding to the linear autonomous dynamics of a magnetic auto-oscillatory system subject to the action of a spin-polarized electric current. In such a system, two concurrent dissipative mechanisms, arising from the positive intrinsic dissipation and the negative current-induced one, take place simultaneously and make the excitation of a steady precessional motion of the magnetization vector conceivable. The proposed formulation leads to the definition of a complex generalized non-Hermitian Eigenvalue problem, both in the case of a macrospin model and in the more general case of an ensemble of magnetic particles interacting each other through magnetostatic and exchange interactions. This method allows to identify the spin-wave normal modes which become unstable in the presence of the two competing dissipative contributions and provides an accurate estimation of the value of the excitation threshold current.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1910433
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact