The aquaporins (AQPs) are a family (AQP-AQP10) of transmembrane channel proteins that mediate the transport of water, ions, gases, and small molecules across the cell membrane, thus regulating cell homeostasis. AQP4 has the highest water permeability and it is involved in hearing and vision in mammals. Here, we used immunohistochemistry to map the presence of AQP4 in the sensory organs of adult zebrafish. The antibody used detected by Western blot proteins of 34 kDa (equivalent to that of mammalian AQP4) and maps in the sensory cells of taste buds, the hair sensory cells of the neuromast and of the maculae, and cristae ampullaris of the inner ear. Moreover, the retinal photoreceptors display AQP4 immunoreactivity. The non-sensory cells in these organs were AQP4 negative. These results suggest that the AQP4 could play a role in the regulation of water balance and ion transport in the sensory cells of zebrafish, bringing new data for the utilizing of this experimental model in the biology of sensory system

Aquaporin 4 in the sensory organs of adult zebrafish (Danio rerio)

ZICHICHI, ROSALIA;MAGNOLI, DOMENICO;MONTALBANO, Giuseppe;LAURA', Rosaria;CIRIACO, Emilia;GERMANA', Antonino
2011

Abstract

The aquaporins (AQPs) are a family (AQP-AQP10) of transmembrane channel proteins that mediate the transport of water, ions, gases, and small molecules across the cell membrane, thus regulating cell homeostasis. AQP4 has the highest water permeability and it is involved in hearing and vision in mammals. Here, we used immunohistochemistry to map the presence of AQP4 in the sensory organs of adult zebrafish. The antibody used detected by Western blot proteins of 34 kDa (equivalent to that of mammalian AQP4) and maps in the sensory cells of taste buds, the hair sensory cells of the neuromast and of the maculae, and cristae ampullaris of the inner ear. Moreover, the retinal photoreceptors display AQP4 immunoreactivity. The non-sensory cells in these organs were AQP4 negative. These results suggest that the AQP4 could play a role in the regulation of water balance and ion transport in the sensory cells of zebrafish, bringing new data for the utilizing of this experimental model in the biology of sensory system
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/1911324
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact