The definition of monotone weak Lindelofness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelof if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) a(a)r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelof spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.

Monotone weak Lindelofness

BONANZINGA, Maddalena;CAMMAROTO, Filippo;PANSERA, BRUNO ANTONIO
2011

Abstract

The definition of monotone weak Lindelofness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelof if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) a(a)r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelof spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/1911694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact