Nitrogen lasers have been used for many years to make dye solutions lase. A nitrogen laser, which transverse electrical discharge in gas at atmospheric pressure has been built in our laboratory. It has been characterized and applied to pump different dyes: Rhodamine 6G, Coumarin 440, DOTCI, and pyranine in simple "on axis" geometric configuration. It has been shown that pyranine can lase in the absence of any optical external mirror cavity, this happens at very low threshold, and in different solvents. Dyes under consideration can be grouped into two major classes according to their lasing behavior independently on their concentration in the solvent: Rhodamine 6G and DOTCI can lase both axially or transversally and Coumarin 440 and pyranine can lase only axially. Other intriguing features have been observed that span from simultaneous multiple beam generation, to super fluorescence and to distribute axial pumping of dye solutions. A preliminary basis for understanding and controlling such processes is the spatial energy distribution and the energy density of the beam.

Lasing properties and nonlinearities of dyes under high power pumping

CAUSA, Federica;
2007

Abstract

Nitrogen lasers have been used for many years to make dye solutions lase. A nitrogen laser, which transverse electrical discharge in gas at atmospheric pressure has been built in our laboratory. It has been characterized and applied to pump different dyes: Rhodamine 6G, Coumarin 440, DOTCI, and pyranine in simple "on axis" geometric configuration. It has been shown that pyranine can lase in the absence of any optical external mirror cavity, this happens at very low threshold, and in different solvents. Dyes under consideration can be grouped into two major classes according to their lasing behavior independently on their concentration in the solvent: Rhodamine 6G and DOTCI can lase both axially or transversally and Coumarin 440 and pyranine can lase only axially. Other intriguing features have been observed that span from simultaneous multiple beam generation, to super fluorescence and to distribute axial pumping of dye solutions. A preliminary basis for understanding and controlling such processes is the spatial energy distribution and the energy density of the beam.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1914237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact