Spin torque oscillators with nanoscale electrical contacts are able to produce coherent spin waves in extended magnetic films, and offer an attractive combination of electrical and magnetic field control, broadband operation, fast spin-wave frequency modulation, and the possibility of synchronizing multiple spin-wave injection sites. However, many potential applications rely on propagating (as opposed to localized) spin waves, and direct evidence for propagation has been lacking. Here, we directly observe a propagating spin wave launched from a spin torque oscillator with a nanoscale electrical contact into an extended Permalloy (nickel iron) film through the spin transfer torque effect. The data, obtained by wave-vector-resolved micro-focused Brillouin light scattering, show that spin waves with tunable frequencies can propagate for several micrometres. Micromagnetic simulations provide the theoretical support to quantitatively reproduce the results.

Direct observation of a propagating spin wave induced by spin transfer torque

CONSOLO, Giancarlo;
2011-01-01

Abstract

Spin torque oscillators with nanoscale electrical contacts are able to produce coherent spin waves in extended magnetic films, and offer an attractive combination of electrical and magnetic field control, broadband operation, fast spin-wave frequency modulation, and the possibility of synchronizing multiple spin-wave injection sites. However, many potential applications rely on propagating (as opposed to localized) spin waves, and direct evidence for propagation has been lacking. Here, we directly observe a propagating spin wave launched from a spin torque oscillator with a nanoscale electrical contact into an extended Permalloy (nickel iron) film through the spin transfer torque effect. The data, obtained by wave-vector-resolved micro-focused Brillouin light scattering, show that spin waves with tunable frequencies can propagate for several micrometres. Micromagnetic simulations provide the theoretical support to quantitatively reproduce the results.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1917905
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 316
  • ???jsp.display-item.citation.isi??? 312
social impact