A class of posets, called thin posets, is introduced, and it is shown that every thin poset can be covered by a finite family of trees. This fact is used to show that (within ZFC) every separable monotonically Menger space is first countable. This contrasts with the previously known fact that under CH there are countable monotonically Lindelof spaces which are not first countable.
Combinatorics of Thin Posets: Application to Monotone Covering Properties
BONANZINGA, Maddalena;
2011-01-01
Abstract
A class of posets, called thin posets, is introduced, and it is shown that every thin poset can be covered by a finite family of trees. This fact is used to show that (within ZFC) every separable monotonically Menger space is first countable. This contrasts with the previously known fact that under CH there are countable monotonically Lindelof spaces which are not first countable.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.