A class of posets, called thin posets, is introduced, and it is shown that every thin poset can be covered by a finite family of trees. This fact is used to show that (within ZFC) every separable monotonically Menger space is first countable. This contrasts with the previously known fact that under CH there are countable monotonically Lindelof spaces which are not first countable.

Combinatorics of Thin Posets: Application to Monotone Covering Properties

BONANZINGA, Maddalena;
2011-01-01

Abstract

A class of posets, called thin posets, is introduced, and it is shown that every thin poset can be covered by a finite family of trees. This fact is used to show that (within ZFC) every separable monotonically Menger space is first countable. This contrasts with the previously known fact that under CH there are countable monotonically Lindelof spaces which are not first countable.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1918395
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact