This paper reports new voltammetric measurements on the interactions between tin(II) and the most important natural inorganic ligands, OH−, Cl−, F−, View the MathML source, View the MathML source and View the MathML source. For a better understanding of tin(II) speciation, an analysis is also given of prior data on the same systems from the literature. The formation constants were determined at t = 25 °C in different ionic media and at different ionic strengths, specifically the following: Sn(OH)q (0.1 ⩽ I/mol L−1 ⩽ 1.0 in NaNO3), SnClr and Sn(OH)Cl (0.1 ⩽ I/mol L−1 ⩽ 2.3 in Na(NO3, Cl)), Sn(SO4)r (0.1 ⩽ I/mol L−1 ⩽ 1.6 in Na(NO3, SO4)), SnHqCO3 and SnHqPO4 (0.15 ⩽ I/mol L−1 ⩽ 1.0 in NaNO3), where the subscripts r and q represent the stoichiometric coefficients. Concerning the SnFr species, reliable literature values were considered (0.15 ⩽ I/mol L−1 ⩽ 1.0 in NaClO4). Fifteen voltammetric measurements were performed in synthetic seawater; the total seawater binding ability was evaluated by a model in which synthetic seawater is expressed as a single salt, BA. The formation of species between tin(II) and the anion of the marine salt (A) was also proposed, and the corresponding stability constants at different salinities (5 ⩽ S ⩽ 50) were reported. In addition, studies on the solubility of Sn(OH)2(s) were carried out using voltammetry and light scattering measurements. The “extra-stability” of the mixed species with respect to the parent species was evaluated, in particular for Sn(OH)Cl and the corresponding species involving the anion of the marine salt (A). The dependence of the formation constants on ionic strength was analysed using extended Debye-Hückel and Specific ion Interaction Theory (SIT) type equations. Tin(II) speciation was also evaluated in different natural fluid conditions, where, in all cases, carbonate complexation was predominant, hampering the formation of hydrolytic species throughout the investigated pH range. Moreover, some formation enthalpy changes were calculated for the Sn(OH)+, Sn(OH)2(aq), Sn(OH)2(s), View the MathML source, View the MathML source, View the MathML source, Sn(OH)Cl, SnCl+, SnCl2 and View the MathML source species on the basis of the available literature stability constant values at different temperatures and using the empirical relationships reported in the literature. The ΔH values at t = 25 °C were positive in all cases except for the Sn(OH)2(s) and View the MathML source species, indicating an increase in the stability constant values with increasing temperature. This work represents an advance in the knowledge, understanding and modelling of the inorganic speciation of tin(II) in natural fluids, particularly for solutions containing chloride, fluoride, sulphate, carbonate and phosphate anions.

The inorganic speciation of tin(II) in aqueous solution

CIGALA, ROSALIA maria;CREA, Francesco;DE STEFANO, Concetta;LANDO, GABRIELE;MILEA, Demetrio;SAMMARTANO, Silvio
2012-01-01

Abstract

This paper reports new voltammetric measurements on the interactions between tin(II) and the most important natural inorganic ligands, OH−, Cl−, F−, View the MathML source, View the MathML source and View the MathML source. For a better understanding of tin(II) speciation, an analysis is also given of prior data on the same systems from the literature. The formation constants were determined at t = 25 °C in different ionic media and at different ionic strengths, specifically the following: Sn(OH)q (0.1 ⩽ I/mol L−1 ⩽ 1.0 in NaNO3), SnClr and Sn(OH)Cl (0.1 ⩽ I/mol L−1 ⩽ 2.3 in Na(NO3, Cl)), Sn(SO4)r (0.1 ⩽ I/mol L−1 ⩽ 1.6 in Na(NO3, SO4)), SnHqCO3 and SnHqPO4 (0.15 ⩽ I/mol L−1 ⩽ 1.0 in NaNO3), where the subscripts r and q represent the stoichiometric coefficients. Concerning the SnFr species, reliable literature values were considered (0.15 ⩽ I/mol L−1 ⩽ 1.0 in NaClO4). Fifteen voltammetric measurements were performed in synthetic seawater; the total seawater binding ability was evaluated by a model in which synthetic seawater is expressed as a single salt, BA. The formation of species between tin(II) and the anion of the marine salt (A) was also proposed, and the corresponding stability constants at different salinities (5 ⩽ S ⩽ 50) were reported. In addition, studies on the solubility of Sn(OH)2(s) were carried out using voltammetry and light scattering measurements. The “extra-stability” of the mixed species with respect to the parent species was evaluated, in particular for Sn(OH)Cl and the corresponding species involving the anion of the marine salt (A). The dependence of the formation constants on ionic strength was analysed using extended Debye-Hückel and Specific ion Interaction Theory (SIT) type equations. Tin(II) speciation was also evaluated in different natural fluid conditions, where, in all cases, carbonate complexation was predominant, hampering the formation of hydrolytic species throughout the investigated pH range. Moreover, some formation enthalpy changes were calculated for the Sn(OH)+, Sn(OH)2(aq), Sn(OH)2(s), View the MathML source, View the MathML source, View the MathML source, Sn(OH)Cl, SnCl+, SnCl2 and View the MathML source species on the basis of the available literature stability constant values at different temperatures and using the empirical relationships reported in the literature. The ΔH values at t = 25 °C were positive in all cases except for the Sn(OH)2(s) and View the MathML source species, indicating an increase in the stability constant values with increasing temperature. This work represents an advance in the knowledge, understanding and modelling of the inorganic speciation of tin(II) in natural fluids, particularly for solutions containing chloride, fluoride, sulphate, carbonate and phosphate anions.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2013021
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 54
social impact