Let H be a hypergroup. The author defines the powers of an element x in H , when the exponent is a negative integer or zero and brings out several properties about them. In the second part results about strongly cyclic r-hypergroups are obtained, e.g., all the subhypergroups of H are determined when H is generated by an element of finite period.

Powers with integer exponent in a hypergroup, and r-hypergroups

DE SALVO, Mario
1985-01-01

Abstract

Let H be a hypergroup. The author defines the powers of an element x in H , when the exponent is a negative integer or zero and brings out several properties about them. In the second part results about strongly cyclic r-hypergroups are obtained, e.g., all the subhypergroups of H are determined when H is generated by an element of finite period.
1985
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2089621
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact