The author studies a class of special hypergroups defined in the paper. Let (H,∘) be a hypergroup and (G,⋅) a group with the identity 1, and let {A_i:i∈G} be a family of non-empty sets such that A_1 =H and A_i ∩A_j =∅ if i≠j . Define the binary hyperoperation ∗ on K=⋃ A_i by taking x∗y=x∘y if (x,y)∈H×H and x∗y=A_k if (x,y)∈A_i ×A_j ≠H×H and i⋅j=k . Then (K,∗) is a hypergroup which is called an (H,G)-hypergroup. We quote some theorems giving the main results in the paper. Theorem 1: If (K_1 ,∗) and (K_2 ,∗) are (H_1 ,G_1 ) and (H_2 ,G_2 ) -hypergroups, respectively, and K_1 ≃K_2 , then H_1 ≃H_2 and G_1 ≃G_2 . Theorem 5: If (K,∗) is an (H,G) -hypergroup, then K is cyclic if and only if G is a cyclic group. Some combinatorial properties of these hypergroups are also considered.

(H,G)-hypergroups

DE SALVO, Mario
1984

Abstract

The author studies a class of special hypergroups defined in the paper. Let (H,∘) be a hypergroup and (G,⋅) a group with the identity 1, and let {A_i:i∈G} be a family of non-empty sets such that A_1 =H and A_i ∩A_j =∅ if i≠j . Define the binary hyperoperation ∗ on K=⋃ A_i by taking x∗y=x∘y if (x,y)∈H×H and x∗y=A_k if (x,y)∈A_i ×A_j ≠H×H and i⋅j=k . Then (K,∗) is a hypergroup which is called an (H,G)-hypergroup. We quote some theorems giving the main results in the paper. Theorem 1: If (K_1 ,∗) and (K_2 ,∗) are (H_1 ,G_1 ) and (H_2 ,G_2 ) -hypergroups, respectively, and K_1 ≃K_2 , then H_1 ≃H_2 and G_1 ≃G_2 . Theorem 5: If (K,∗) is an (H,G) -hypergroup, then K is cyclic if and only if G is a cyclic group. Some combinatorial properties of these hypergroups are also considered.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/2095221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact