The Urysohn number of a space X is U (X) = min{tau : for every subset A of X such that the cardinality of A is greater or equal to tau one can pick neighborhoods U-a of a for all a so that the intersection of the clousures of these elements is empty}. Some known statements about Urysohn spaces can be generalized in terms of the Urysohn number.

On the Urysohn Number of A Topological Space

BONANZINGA, Maddalena;CAMMAROTO, Filippo;
2011-01-01

Abstract

The Urysohn number of a space X is U (X) = min{tau : for every subset A of X such that the cardinality of A is greater or equal to tau one can pick neighborhoods U-a of a for all a so that the intersection of the clousures of these elements is empty}. Some known statements about Urysohn spaces can be generalized in terms of the Urysohn number.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2180823
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact