The anthracycline anticancer agents daunorubicin (DAUN) and doxorubicin (DOX) are reduced by different NADPH-dependent cytosolic reductases into their corresponding alcohol metabolites daunorubicinol (DAUNol) and doxorubicinol (DOXol), which have been implicated in the development of chronic cardiomyopathy. To better understand the individual importance of each enzyme in the reduction and to provide deeper insight into the binding at atomic level we performed molecular docking and dynamics simulations of DAUN and DOX into the active sites of human carbonyl reductase 1 (CBR1) and human aldehyde reductase (AKR1A1). Such simulations evidenced a different behavior between the reductases with respect to DAUN and DOX suggesting major contribution of CBR1 in the reduction. The results are in agreement with available experimental data and for each enzyme and anthracycline pair provided the identification of key residues involved in the interactions. The structural models that we have derived could serve as a useful tool for structure-guided drug design studies.

Understanding the binding of daunorubicin and doxorubicin toNADPH-dependent cytosolic reductases by computational methods

FICARRA, Silvana;
2012-01-01

Abstract

The anthracycline anticancer agents daunorubicin (DAUN) and doxorubicin (DOX) are reduced by different NADPH-dependent cytosolic reductases into their corresponding alcohol metabolites daunorubicinol (DAUNol) and doxorubicinol (DOXol), which have been implicated in the development of chronic cardiomyopathy. To better understand the individual importance of each enzyme in the reduction and to provide deeper insight into the binding at atomic level we performed molecular docking and dynamics simulations of DAUN and DOX into the active sites of human carbonyl reductase 1 (CBR1) and human aldehyde reductase (AKR1A1). Such simulations evidenced a different behavior between the reductases with respect to DAUN and DOX suggesting major contribution of CBR1 in the reduction. The results are in agreement with available experimental data and for each enzyme and anthracycline pair provided the identification of key residues involved in the interactions. The structural models that we have derived could serve as a useful tool for structure-guided drug design studies.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2328092
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact