Traumatic brain injury (TBI) induces primary and secondary damage in both the endothelium and the brain parenchyma. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury. Thyroid hormones are reported to be decreased in patients with brain injury. Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of TBI. Here, using CCI in adult male mice, we set to determine whether 3,5,3'-triiodothyronine (T3) attenuates posttraumatic neurodegeneration and neuroinflammation in an experimental model of TBI. Treatment with T3 (1.2μg/100g body weight, i.p.) 1hour after TBI resulted in a significant improvement in motor and cognitive recovery after CCI, as well as in marked reduction of lesion volumes. Mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein, and formation of inducible nitric oxide synthase (iNOS). Western blot analysis revealed the ability of T3 to reduce brain trauma through modulation of cytoplasmic-nuclear shuttling of nuclear factor-κB (NF-κB).Twenty-four hrs after brain trauma,T3-treated mice also showed significantly lower number of TUNEL(+) apoptotic neurons and curtailed induction of Bax, compared to vehicle control. In addition, T3 significantly enhanced the post-TBI expression of the neuroprotective neurotrophins (BDNF, and GDNF) compared to vehicle. Our data provide an additional mechanism for the anti-inflammatory effects of thyroid hormone with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits.

Exogenous T3 administration provides neuroprotection in a murine model of traumatic brain injury.

CRUPI, ROSALIA;PATERNITI, IRENE;CAMPOLO, MICHELA;CUZZOCREA, Salvatore;ESPOSITO, EMANUELA;DI PAOLA, ROSANNA
2013-01-01

Abstract

Traumatic brain injury (TBI) induces primary and secondary damage in both the endothelium and the brain parenchyma. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury. Thyroid hormones are reported to be decreased in patients with brain injury. Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of TBI. Here, using CCI in adult male mice, we set to determine whether 3,5,3'-triiodothyronine (T3) attenuates posttraumatic neurodegeneration and neuroinflammation in an experimental model of TBI. Treatment with T3 (1.2μg/100g body weight, i.p.) 1hour after TBI resulted in a significant improvement in motor and cognitive recovery after CCI, as well as in marked reduction of lesion volumes. Mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein, and formation of inducible nitric oxide synthase (iNOS). Western blot analysis revealed the ability of T3 to reduce brain trauma through modulation of cytoplasmic-nuclear shuttling of nuclear factor-κB (NF-κB).Twenty-four hrs after brain trauma,T3-treated mice also showed significantly lower number of TUNEL(+) apoptotic neurons and curtailed induction of Bax, compared to vehicle control. In addition, T3 significantly enhanced the post-TBI expression of the neuroprotective neurotrophins (BDNF, and GDNF) compared to vehicle. Our data provide an additional mechanism for the anti-inflammatory effects of thyroid hormone with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2447621
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 39
social impact