Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpi´nski gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpi´nski fractal. The abstract results are illustrated by explicit examples.

Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket

BONANNO, Gabriele;
2012

Abstract

Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpi´nski gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpi´nski fractal. The abstract results are illustrated by explicit examples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2537227
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact