Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell, different from the typical electrochemical systems working in liquid phase, was developed. There are several advantages to work in gas phase, e.g. no need to recover the products from a liquid phase and no problems of CO2 solubility, etc. Operating under these conditions and using electrodes based on metal nanoparticles supported over carbon nanotube (CNT) type materials, long C-chain products (in particular isopropanol under optimized conditions, but also hydrocarbons up to C8–C9) were obtained from the reduction of CO2. Pt-CNT are more stable and give in some cases a higher productivity, but Fe-CNT, particular using N-doped carbon nanotubes, give excellent properties and are preferable to noble-metal-based electrocatalysts for the lower cost. The control of the localization of metal particles at the inner or outer surface of CNT is an importact factor for the product distribution. The nature of the nanocarbon substrate also plays a relevant role in enhancing the productivity and tuning the selectivity towards long C-chain products. The electrodes for the electrocatalytic conversion of CO2 are part of a photoelectrocatalytic (PEC) solar cell concept, aimed to develop knowledge for the new generation artificial leaf-type solar cells which can use sunlight and water to convert CO2 to fuels and chemicals. The CO2 reduction to liquid fuels by solar energy is a good attempt to introduce renewables into the existing energy and chemical infrastructures, having a higher energy density and easier transport/storage than other competing solutions (i.e. H2).
Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes
GENOVESE, CHIARA;AMPELLI, Claudio;PERATHONER, Siglinda;CENTI, Gabriele
2013-01-01
Abstract
Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell, different from the typical electrochemical systems working in liquid phase, was developed. There are several advantages to work in gas phase, e.g. no need to recover the products from a liquid phase and no problems of CO2 solubility, etc. Operating under these conditions and using electrodes based on metal nanoparticles supported over carbon nanotube (CNT) type materials, long C-chain products (in particular isopropanol under optimized conditions, but also hydrocarbons up to C8–C9) were obtained from the reduction of CO2. Pt-CNT are more stable and give in some cases a higher productivity, but Fe-CNT, particular using N-doped carbon nanotubes, give excellent properties and are preferable to noble-metal-based electrocatalysts for the lower cost. The control of the localization of metal particles at the inner or outer surface of CNT is an importact factor for the product distribution. The nature of the nanocarbon substrate also plays a relevant role in enhancing the productivity and tuning the selectivity towards long C-chain products. The electrodes for the electrocatalytic conversion of CO2 are part of a photoelectrocatalytic (PEC) solar cell concept, aimed to develop knowledge for the new generation artificial leaf-type solar cells which can use sunlight and water to convert CO2 to fuels and chemicals. The CO2 reduction to liquid fuels by solar energy is a good attempt to introduce renewables into the existing energy and chemical infrastructures, having a higher energy density and easier transport/storage than other competing solutions (i.e. H2).Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.