Testicular cancer is the most frequent cancer in young men. The large majority of patients have a good prognosis, but in a small group of tumors, the current treatments are not effective. Radioiodine is routinely used in the treatment of thyroid cancer and is currently investigated as a potential therapeutic tool even for extra-thyroid tumors able to concentrate this radioisotope. Expression of Na C /I K symporter (NIS (SLC5A5)), the glycoprotein responsible for iodide transport, has been demonstrated in normal testicular tissue. In this study, we analyzed NIS expression in a large series of testicular carcinomas. Our retrospective series included 107 patients operated for testicular tumors: 98 typical seminomas, six embryonal carcinomas, one mixed embryonal choriocarcinoma, and two Leydig cells tumors. Expression and regulation ofNISmRNA and protein levels were also investigated in human embryonal testicular carcinoma cells (NTERA) by real-time RT-PCR and western blotting respectively. Immunohistochemical analysis showed the presence of NIS in the large majority of seminomas (90/98) and embryonal carcinomas (5/7) of the testis but not in Leydig cell carcinomas. Expression of NIS protein was significantly associated with lymphovascular invasion. In NTERA cells treated with the histone deacetylase inhibitors SAHA and valproic acid, a significant increase inNISmRNA (about 60- and 30-fold vs control,P!0.001 and P!0.01 respectively) and protein levels, resulting in enhanced ability to uptake radioiodine, was observed. Finally, NIS expression in testicular tumors with the more aggressive behavior is of interest for the potential use of targeting NIS to deliver radioiodine in malignant cells.

Sodium/iodide symporter is expressed in the majority of seminomas and embryonal testicular carcinomas

NAVARRA, Michele;
2013-01-01

Abstract

Testicular cancer is the most frequent cancer in young men. The large majority of patients have a good prognosis, but in a small group of tumors, the current treatments are not effective. Radioiodine is routinely used in the treatment of thyroid cancer and is currently investigated as a potential therapeutic tool even for extra-thyroid tumors able to concentrate this radioisotope. Expression of Na C /I K symporter (NIS (SLC5A5)), the glycoprotein responsible for iodide transport, has been demonstrated in normal testicular tissue. In this study, we analyzed NIS expression in a large series of testicular carcinomas. Our retrospective series included 107 patients operated for testicular tumors: 98 typical seminomas, six embryonal carcinomas, one mixed embryonal choriocarcinoma, and two Leydig cells tumors. Expression and regulation ofNISmRNA and protein levels were also investigated in human embryonal testicular carcinoma cells (NTERA) by real-time RT-PCR and western blotting respectively. Immunohistochemical analysis showed the presence of NIS in the large majority of seminomas (90/98) and embryonal carcinomas (5/7) of the testis but not in Leydig cell carcinomas. Expression of NIS protein was significantly associated with lymphovascular invasion. In NTERA cells treated with the histone deacetylase inhibitors SAHA and valproic acid, a significant increase inNISmRNA (about 60- and 30-fold vs control,P!0.001 and P!0.01 respectively) and protein levels, resulting in enhanced ability to uptake radioiodine, was observed. Finally, NIS expression in testicular tumors with the more aggressive behavior is of interest for the potential use of targeting NIS to deliver radioiodine in malignant cells.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2554469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact