A thermodynamical model for viscoanelastic media is analyzed using the nonholonomic geometry. A 27-dimensional manifold is introduced and the differential equations for the geodetics are determined and analytically solved. It is shown that, in this manifold, the best specific entropy is a harmonic function. In the linear case the propagation of transverse acoustic waves is studied and the theoretical results are compared with some experimental data from a polymeric material (PolyIsobutilene).

Nonholonomic Geometry of Viscoanelastic Media and Experimental Confirmation

CIANCIO, Armando;
2013-01-01

Abstract

A thermodynamical model for viscoanelastic media is analyzed using the nonholonomic geometry. A 27-dimensional manifold is introduced and the differential equations for the geodetics are determined and analytically solved. It is shown that, in this manifold, the best specific entropy is a harmonic function. In the linear case the propagation of transverse acoustic waves is studied and the theoretical results are compared with some experimental data from a polymeric material (PolyIsobutilene).
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2619570
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact