Protein aggregation is often associated with conformational and structural changes of secondary structure elements that may lead to exposure of some specific residues. Data obtained in our experimental work indicate that trehalose (1.0. M) effectively prevent thermal inactivation and aggregation of lysozyme. In fact, following heat treatment, lysozyme generates insoluble aggregates which are almost completely absent in the samples incubated in the presence of the disaccharide. The experimental approach consists in studying FTIR spectra of intrinsic chromophores and VT-NMR measurements on lysozyme water mixtures in the presence of trehalose. FTIR measurements suggest that in the presence of 1.0. M of trehalose there is a clear decrease in the loss of α-helix structure and in the formation of intermolecularly aggregated structures. Electrospray ionization mass spectrometry (ESI-MS) was employed to characterize protein structural transition, highlighting as trehalose remarkably influenced solvent accessibility to the amide peptide backbone upon heat treatment, consequentially decreasing local protein environment changes. Complementary informations are also obtained by UV-vis spectroscopy measurements, Congo Red binding and activity determinations.

FTIR, ESI-MS, VT-NMR and SANS study of trehalose thermal stabilization of lysozyme

BARRECA, Davide;LAGANA', Giuseppina;MAGAZU', Salvatore;MIGLIARDO, Federica;GATTUSO, Giuseppe;BELLOCCO, Ersilia Santa
2014-01-01

Abstract

Protein aggregation is often associated with conformational and structural changes of secondary structure elements that may lead to exposure of some specific residues. Data obtained in our experimental work indicate that trehalose (1.0. M) effectively prevent thermal inactivation and aggregation of lysozyme. In fact, following heat treatment, lysozyme generates insoluble aggregates which are almost completely absent in the samples incubated in the presence of the disaccharide. The experimental approach consists in studying FTIR spectra of intrinsic chromophores and VT-NMR measurements on lysozyme water mixtures in the presence of trehalose. FTIR measurements suggest that in the presence of 1.0. M of trehalose there is a clear decrease in the loss of α-helix structure and in the formation of intermolecularly aggregated structures. Electrospray ionization mass spectrometry (ESI-MS) was employed to characterize protein structural transition, highlighting as trehalose remarkably influenced solvent accessibility to the amide peptide backbone upon heat treatment, consequentially decreasing local protein environment changes. Complementary informations are also obtained by UV-vis spectroscopy measurements, Congo Red binding and activity determinations.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2647772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact