Deutered polyethylene (CD2)n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D−D cross-section values around 3MeV energy. At the first instants of the plasma generation, during which high temperature, density and ion acceleration occur, the D−D fusions occur as confirmed by the detection of mono-energetic protons and neutrons with a kinetic energy of 3.0MeV and 2.5MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension), target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets) and used geometry (incidence angle, laser spot, secondary target positions). A number of D−D fusion events of the order of 106÷7 per laser shot has been measured.

Nuclear fusion effects induced in intense laser-generated plasmas

TORRISI, Lorenzo;
2013-01-01

Abstract

Deutered polyethylene (CD2)n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D−D cross-section values around 3MeV energy. At the first instants of the plasma generation, during which high temperature, density and ion acceleration occur, the D−D fusions occur as confirmed by the detection of mono-energetic protons and neutrons with a kinetic energy of 3.0MeV and 2.5MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension), target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets) and used geometry (incidence angle, laser spot, secondary target positions). A number of D−D fusion events of the order of 106÷7 per laser shot has been measured.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2653171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact