Phloretin and its glycosylated derivatives (phlorizin and phloretin 30,50-di-C-glucoside) are dihydrochalcones that have many interesting biological properties. The results obtained showed that the dihydrochalcones are able to inhibit growth of Gram positive bacteria, in particular Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 13932 and methicillin-resistant S. aureus clinical strains. Moreover, phloretin is active also against the Gram negative bacteria Salmonella typhimurium ATCC 13311. The determination of the enzymatic activity of key metabolic enzymes allowed us to shed some light on the biochemical mechanism of aglycon cell growth inhibition, showing as it remarkably influences the energetic metabolism of S. aureus. In addition, structure/activity determinations highlighted that the presence of a glycosyl moiety bound to the chalcone structure dramatically decreases the antimicrobial activity of phloretin.
Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat
BARRECA, Davide;BELLOCCO, Ersilia Santa;LAGANA', Giuseppina;GINESTRA, GIOVANNA;BISIGNANO, CARLO
2014-01-01
Abstract
Phloretin and its glycosylated derivatives (phlorizin and phloretin 30,50-di-C-glucoside) are dihydrochalcones that have many interesting biological properties. The results obtained showed that the dihydrochalcones are able to inhibit growth of Gram positive bacteria, in particular Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 13932 and methicillin-resistant S. aureus clinical strains. Moreover, phloretin is active also against the Gram negative bacteria Salmonella typhimurium ATCC 13311. The determination of the enzymatic activity of key metabolic enzymes allowed us to shed some light on the biochemical mechanism of aglycon cell growth inhibition, showing as it remarkably influences the energetic metabolism of S. aureus. In addition, structure/activity determinations highlighted that the presence of a glycosyl moiety bound to the chalcone structure dramatically decreases the antimicrobial activity of phloretin.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.