Novel papain-family cathepsin L-like cysteine protease inhibitors endowed with antitrypanosomal and antimalarial activity were developed, through an optimization study of previously developed inhibitors. In the present work, we studied the structure-activity relationships of these derivatives, with the aim to develop new analogues with a simplified and more synthetically accessible structure and with improved antiparasitic activity. The structure of the model compounds was significantly simplified by modifying or even eliminating the side chain appended at the C3 atom of the benzodiazepine scaffold. In addition, a simple methylene spacer of appropriate length was inserted between the benzodiazepine ring and the 3-bromoisoxazoline moiety. Several rhodesain and falcipain-2 inhibitors displaying single-digit micromolar or sub-micromolar antiparasitic activity against one or both parasites were identified, with activities that were one order of magnitude more potent than the model compounds.

Synthesis and Biological Evaluation of Papain-Family Cathepsin L-Like Cysteine Protease Inhibitors Containing a 1,4-Benzodiazepine Scaffold as Antiprotozoal Agents

ETTARI, Roberta;GRASSO, Silvana;ZAPPALA', Maria;
2014-01-01

Abstract

Novel papain-family cathepsin L-like cysteine protease inhibitors endowed with antitrypanosomal and antimalarial activity were developed, through an optimization study of previously developed inhibitors. In the present work, we studied the structure-activity relationships of these derivatives, with the aim to develop new analogues with a simplified and more synthetically accessible structure and with improved antiparasitic activity. The structure of the model compounds was significantly simplified by modifying or even eliminating the side chain appended at the C3 atom of the benzodiazepine scaffold. In addition, a simple methylene spacer of appropriate length was inserted between the benzodiazepine ring and the 3-bromoisoxazoline moiety. Several rhodesain and falcipain-2 inhibitors displaying single-digit micromolar or sub-micromolar antiparasitic activity against one or both parasites were identified, with activities that were one order of magnitude more potent than the model compounds.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2809769
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact