Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, e.g. of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+ ]i ). The present study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry, and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca2+ and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by up-regulation of ceramide abundance, energy depletion and activation of PKC
Enhanced Eryptosis following Juglone Exposure
FAGGIO, Caterina;
2015-01-01
Abstract
Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, e.g. of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+ ]i ). The present study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry, and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca2+ and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by up-regulation of ceramide abundance, energy depletion and activation of PKCPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.