To investigate the prokaryotic community structure and composition in an active hydrothermal site, named Black Point, off Panarea Island (Eolian Islands, Italy), we examined sediment and fluid samples, differing in temperature, by a massive parallel sequencing (Illumina) technique targeting the V3 region of the 16S rRNA gene. The used technique enabled us to detect a greater prokaryotic diversity than that until now observed and to reveal also microorganisms occurring at very low abundance (B0.01 %). Most of sequences were assigned to Bacteria while Archaea were a minor component of the microbial community in both low- and high-temperature samples. Proteobacteria (mainly consisting of Alpha-, Gamma-, and Epsilonproteobacteria) dominated among all samples followed by Actinobacteria and Bacteroidetes. Analyzed DNA obtained from samples taken at different temperatures indicated the presence of members of different dominant genera. The main differences were observed between sediment samples where Rhodovulum and Thiohalospira prevailed at high temperature, while Thalassomonas and Sulfurimonas at low temperature. Chlorobium, Acinetobacter, Sulfurimonas, and Brevundimonas were abundant in both low- and high-temperature fluid samples. Euryarchaeota dominated the archaeal community in all samples. Classes of Euryarchaeota embracing hyperthermophilic members (Thermococci and Thermoplasmata) and of Crenarchaeota (Thermoprotei) were more abundant in high-temperature samples. A great number of sequences referred to Bacteria and Archaea still remained unaffiliated, indicating that Black Point site represents a rich source of so-far uncharted prokaryotic diversity.

Diversity of Prokaryotic Community at a Shallow Marine Hydrothermal Site Elucidated by Illumina Sequencing Technology

GUGLIANDOLO, Concetta;MAUGERI, Teresa Luciana
2014-01-01

Abstract

To investigate the prokaryotic community structure and composition in an active hydrothermal site, named Black Point, off Panarea Island (Eolian Islands, Italy), we examined sediment and fluid samples, differing in temperature, by a massive parallel sequencing (Illumina) technique targeting the V3 region of the 16S rRNA gene. The used technique enabled us to detect a greater prokaryotic diversity than that until now observed and to reveal also microorganisms occurring at very low abundance (B0.01 %). Most of sequences were assigned to Bacteria while Archaea were a minor component of the microbial community in both low- and high-temperature samples. Proteobacteria (mainly consisting of Alpha-, Gamma-, and Epsilonproteobacteria) dominated among all samples followed by Actinobacteria and Bacteroidetes. Analyzed DNA obtained from samples taken at different temperatures indicated the presence of members of different dominant genera. The main differences were observed between sediment samples where Rhodovulum and Thiohalospira prevailed at high temperature, while Thalassomonas and Sulfurimonas at low temperature. Chlorobium, Acinetobacter, Sulfurimonas, and Brevundimonas were abundant in both low- and high-temperature fluid samples. Euryarchaeota dominated the archaeal community in all samples. Classes of Euryarchaeota embracing hyperthermophilic members (Thermococci and Thermoplasmata) and of Crenarchaeota (Thermoprotei) were more abundant in high-temperature samples. A great number of sequences referred to Bacteria and Archaea still remained unaffiliated, indicating that Black Point site represents a rich source of so-far uncharted prokaryotic diversity.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2938569
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact