Beta-arrestin-2 is an adaptor protein that terminates G protein activation and seems to be involved in the modulation of the inflammatory response. Small hyaluronan (HA) fragments, such as 4-mer HA oligosaccharides, are known to interact with the toll-like receptor-4 (TLR-4) with consequent activation of the nuclear factor kappaB (NF-kB) that in turn stimulates the inflammation response. NF-kB activation is mediated by different pathways, in particular by the transforming growth factor-activated kinase-1 (TAK-1). Conversely, increased levels of protein kinase A (PKA), induced by cyclic adenosine monophosphate (cAMP), seem to inhibit NF-kB activation. We studied the involvement and role of beta-arrestin-2 in mouse chondrocytes stimulated with 4-mer HA fragments. The exposure of chondrocytes to 4-mer HA produced a significant up-regulation in TLR-4, cAMP, beta-arrestin-2, TAK-1, protein 38 mitogen-activated protein kinase (p38MAPK), and PKA, both in terms of mRNA expression and of the related protein levels. NF-kB was significantly activated, thereby producing the transcription of pro-inflammatory mediators, including tumor necrosis factor alpha, interleukin-6, and interleukin-17. The treatment of 4-mer HA-stimulated chondrocytes with antibodies against beta-arrestin-2 and/or a specific PKA inhibitor, significantly increased the inflammatory response, while the treatment with a specific p38MAPK inhibitor significantly reduced the inflammatory response. Interestingly, the anti-inflammatory action exerted by beta-arrestin-2 appeared to be mediated in part through the direct inhibition of p38MAPK, preventing NF-kB activation, and in part through cAMP and PKA activation primed by G protein signaling, which exerted an inhibitory effect on NF-kB. Taken together, these results could be useful for future anti-inflammatory strategies

Beta-arrestin-2 negatively modulates inflammation response in mouse chondrocytes induced by 4-mer hyaluronan oligosaccharide

CAMPO, Giuseppe Maurizio
Primo
;
AVENOSO, Angela
Secondo
;
D'ASCOLA, ANGELA;Scuruchi M;CALATRONI, Alberto;CAMPO, Salvatore Giuseppe
Ultimo
2015-01-01

Abstract

Beta-arrestin-2 is an adaptor protein that terminates G protein activation and seems to be involved in the modulation of the inflammatory response. Small hyaluronan (HA) fragments, such as 4-mer HA oligosaccharides, are known to interact with the toll-like receptor-4 (TLR-4) with consequent activation of the nuclear factor kappaB (NF-kB) that in turn stimulates the inflammation response. NF-kB activation is mediated by different pathways, in particular by the transforming growth factor-activated kinase-1 (TAK-1). Conversely, increased levels of protein kinase A (PKA), induced by cyclic adenosine monophosphate (cAMP), seem to inhibit NF-kB activation. We studied the involvement and role of beta-arrestin-2 in mouse chondrocytes stimulated with 4-mer HA fragments. The exposure of chondrocytes to 4-mer HA produced a significant up-regulation in TLR-4, cAMP, beta-arrestin-2, TAK-1, protein 38 mitogen-activated protein kinase (p38MAPK), and PKA, both in terms of mRNA expression and of the related protein levels. NF-kB was significantly activated, thereby producing the transcription of pro-inflammatory mediators, including tumor necrosis factor alpha, interleukin-6, and interleukin-17. The treatment of 4-mer HA-stimulated chondrocytes with antibodies against beta-arrestin-2 and/or a specific PKA inhibitor, significantly increased the inflammatory response, while the treatment with a specific p38MAPK inhibitor significantly reduced the inflammatory response. Interestingly, the anti-inflammatory action exerted by beta-arrestin-2 appeared to be mediated in part through the direct inhibition of p38MAPK, preventing NF-kB activation, and in part through cAMP and PKA activation primed by G protein signaling, which exerted an inhibitory effect on NF-kB. Taken together, these results could be useful for future anti-inflammatory strategies
2015
File in questo prodotto:
File Dimensione Formato  
2969569.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2969569
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact