Adipic acid, which is a very important commodity chemical, is traditionally manufactured industrially by an aged and unsustainable multistep process that involves homogeneous catalysts, aggressive oxidants (concentrated nitric acid) and the production of large quantities of the greenhouse gas nitrous oxide. Much research and development into alternative and cleaner process routes to adipic acid have been carried out over the past 70 years. Improved reaction schemes have invoked variations in fossil raw materials (from benzene and phenol to cyclohexane, cyclohexanol, cyclohexanone, cyclohexene, butadiene, and adiponitrile, etc.), oxidants (O2, air, H2O2, t-BuOOH, ozone), catalysts (homogeneous, heterogeneous, phase transfer, biomimetic) and reaction conditions (low temperature, atmospheric pressure, and solvent-, metal-, halide-, and corrosion-free). No single proposed alternative pathwaysome of which are purely academicsimultaneously addresses the problems of petrochemical origin, toxic starting materials or reagents, generation of environmentally incompatible byproducts, use of forcing reaction conditions, and cost in an entirely satisfactory manner, despite very intense efforts. Recently, more benign bio-based reaction pathways have been proposed starting from renewables, such as glucose or vegetable oils (which will be discussed in Part 2 of this series).

Transiting from Adipic Acid to Bioadipic Acid. 1, Petroleum-Based Processes

CAVALLARO, Stefano
2015-01-01

Abstract

Adipic acid, which is a very important commodity chemical, is traditionally manufactured industrially by an aged and unsustainable multistep process that involves homogeneous catalysts, aggressive oxidants (concentrated nitric acid) and the production of large quantities of the greenhouse gas nitrous oxide. Much research and development into alternative and cleaner process routes to adipic acid have been carried out over the past 70 years. Improved reaction schemes have invoked variations in fossil raw materials (from benzene and phenol to cyclohexane, cyclohexanol, cyclohexanone, cyclohexene, butadiene, and adiponitrile, etc.), oxidants (O2, air, H2O2, t-BuOOH, ozone), catalysts (homogeneous, heterogeneous, phase transfer, biomimetic) and reaction conditions (low temperature, atmospheric pressure, and solvent-, metal-, halide-, and corrosion-free). No single proposed alternative pathwaysome of which are purely academicsimultaneously addresses the problems of petrochemical origin, toxic starting materials or reagents, generation of environmentally incompatible byproducts, use of forcing reaction conditions, and cost in an entirely satisfactory manner, despite very intense efforts. Recently, more benign bio-based reaction pathways have been proposed starting from renewables, such as glucose or vegetable oils (which will be discussed in Part 2 of this series).
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3010168
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 62
social impact