The neurotoxicological potential of environmental pollution, mainly related to petrochemical activities, was investigated in marine mussel Mytilus galloprovincialis. Bivalve molluscs, particularly mussels, are widely used as sentinel organisms in biomonitoring studies for assessing the impact of anthropogenic contaminants. The gills, mainly involved in nutrient uptake, digestion, gas exchange and neuronal signaling, are the first organ to be affected by pollutants present in the external environment, and therefore were selected as target organ for this study. Mussels from an aquaculture farm were caged at a highly polluted petrochemical area and a reference site along the Augusta coastline (eastern Sicily, Italy) for one month. A battery of biomarkers indicative of neuronal perturbations was applied on gills in order to investigate on the serotoninergic (i.e. serotonin, 5-HT, and its receptor, 5-HT3R), cholinergic (i.e. acetylcholine, acetylcholinesterase, AChE, and choline acetyltransferase, ChAT), and dopaminergic system (i.e. tyrosine and tyrosine hydroxylase, TH). Overall, impairment in the normal ciliary motility was found in mussels caged at the polluted site. Alterations in serotoninergic and cholinergic systems were revealed, with enhancement of dopaminergic neurotransmission resulting in a cilio-inhibitory effect. However, the over-expression in 5-HT3R and ChAT at cellular level may indicate an adaptive response of mussels to recover a regular physiological activity in gills. To our knowledge, this is the first study that uses 1H NMR and immunohistochemical assays. Their concurrent use demonstrated to be sensitive and effective for assessing environmental influences on the health status of aquatic organisms, and thus suitable to be applied in ecotoxicological studies.

Neurotoxicological effects on marine mussel Mytilus galloprovincialis caged at petrochemical contaminated areas (eastern Sicily, Italy): 1H NMR and immunohistochemical assays

CAPPELLO, TIZIANA
Primo
;
MAISANO, Maria
Secondo
;
GIANNETTO, alessia;PARRINO, Vincenzo;MAUCERI, Angela Rita
Penultimo
;
FASULO, Salvatore
Ultimo
2015-01-01

Abstract

The neurotoxicological potential of environmental pollution, mainly related to petrochemical activities, was investigated in marine mussel Mytilus galloprovincialis. Bivalve molluscs, particularly mussels, are widely used as sentinel organisms in biomonitoring studies for assessing the impact of anthropogenic contaminants. The gills, mainly involved in nutrient uptake, digestion, gas exchange and neuronal signaling, are the first organ to be affected by pollutants present in the external environment, and therefore were selected as target organ for this study. Mussels from an aquaculture farm were caged at a highly polluted petrochemical area and a reference site along the Augusta coastline (eastern Sicily, Italy) for one month. A battery of biomarkers indicative of neuronal perturbations was applied on gills in order to investigate on the serotoninergic (i.e. serotonin, 5-HT, and its receptor, 5-HT3R), cholinergic (i.e. acetylcholine, acetylcholinesterase, AChE, and choline acetyltransferase, ChAT), and dopaminergic system (i.e. tyrosine and tyrosine hydroxylase, TH). Overall, impairment in the normal ciliary motility was found in mussels caged at the polluted site. Alterations in serotoninergic and cholinergic systems were revealed, with enhancement of dopaminergic neurotransmission resulting in a cilio-inhibitory effect. However, the over-expression in 5-HT3R and ChAT at cellular level may indicate an adaptive response of mussels to recover a regular physiological activity in gills. To our knowledge, this is the first study that uses 1H NMR and immunohistochemical assays. Their concurrent use demonstrated to be sensitive and effective for assessing environmental influences on the health status of aquatic organisms, and thus suitable to be applied in ecotoxicological studies.
2015
File in questo prodotto:
File Dimensione Formato  
Cappello et al., 2015.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3017992
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 91
social impact