Work over the past 2 decades has led to substantial changes in our understanding of dystonia pathophysiology. Three general abnormalities appear to underlie the pathophysiological substrate. The first is a loss of inhibition. This makes sense considering that it may be responsible for the excess of movement and for the overflow phenomena seen in dystonia. A second abnormality is sensory dysfunction which is related to the mild sensory complaints in patients with focal dystonias and may be responsible for some of the motor dysfunction. Third, evidence from animal models of dystonia as well as from patients with primary dystonia has revealed significant alterations of synaptic plasticity characterized by a disruption of homeostatic plasticity, with a prevailing facilitation of synaptic potentiation, together with the loss of synaptic inhibitory processes. We speculate that during motor learning this abnormal plasticity may lead to an abnormal sensorimotor integration, leading to consolidation of abnormal motor engrams. If so, then removing this abnormal plasticity might have little immediate effect on dystonic movements because bad motor memories have already been ''learned'' and are difficult to erase. These considerations might explain the delayed clinical effects of deep brain stimulation (DBS) in patients with generalized dystonia. Current lines of research will be discussed from a network perspective.

Emerging concepts in the physiological basis of dystonia

QUARTARONE, Angelo
Primo
;
2013-01-01

Abstract

Work over the past 2 decades has led to substantial changes in our understanding of dystonia pathophysiology. Three general abnormalities appear to underlie the pathophysiological substrate. The first is a loss of inhibition. This makes sense considering that it may be responsible for the excess of movement and for the overflow phenomena seen in dystonia. A second abnormality is sensory dysfunction which is related to the mild sensory complaints in patients with focal dystonias and may be responsible for some of the motor dysfunction. Third, evidence from animal models of dystonia as well as from patients with primary dystonia has revealed significant alterations of synaptic plasticity characterized by a disruption of homeostatic plasticity, with a prevailing facilitation of synaptic potentiation, together with the loss of synaptic inhibitory processes. We speculate that during motor learning this abnormal plasticity may lead to an abnormal sensorimotor integration, leading to consolidation of abnormal motor engrams. If so, then removing this abnormal plasticity might have little immediate effect on dystonic movements because bad motor memories have already been ''learned'' and are difficult to erase. These considerations might explain the delayed clinical effects of deep brain stimulation (DBS) in patients with generalized dystonia. Current lines of research will be discussed from a network perspective.
2013
File in questo prodotto:
File Dimensione Formato  
Emerging concepts in the physiological basis of dystonia.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 322.23 kB
Formato Adobe PDF
322.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3025982
Citazioni
  • ???jsp.display-item.citation.pmc??? 142
  • Scopus 312
  • ???jsp.display-item.citation.isi??? 285
social impact