The discovery of new natural compounds with pharmacological properties is a field of interest widely growing, especially for the management of neurodegenerative diseases. As no pharmacological treatment is available to prevent the development of these disorders, dietary intake of foods or plant-based extracts with antioxidant properties might have beneficial effects on human health and improve brain functions. Isothiocyanates (ITCs), derived from the hydrolysis of the corresponding glucosinolates (GLs), mainly found in Brassica vegetables (Brassicaceae) and, to a lesser extent, in Moringaceae plants, have demonstrated to exert neuroprotective properties. Specifically, strong evidences suggest that antioxidant effects may be ascribed mainly to their peculiar ability to activate the Nrf2/ARE pathway, but alternative mechanisms of action have also been suggested. This review summarizes the current knowledge about the neuroprotective effects of ITCs in counteracting oxidative stress as well as inflammatory and apoptotic mechanisms, using in vitro and in vivo models of acute and chronic neurodegenerative disease. Therefore, ITCs could be regarded as a promising source of alternative medicine for the prevention and/or treatment of neurodegenerative diseases.
An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases
GALUPPO, MARIA LETTERIA;BRAMANTI, Placido;MAZZON, EMANUELA
2015-01-01
Abstract
The discovery of new natural compounds with pharmacological properties is a field of interest widely growing, especially for the management of neurodegenerative diseases. As no pharmacological treatment is available to prevent the development of these disorders, dietary intake of foods or plant-based extracts with antioxidant properties might have beneficial effects on human health and improve brain functions. Isothiocyanates (ITCs), derived from the hydrolysis of the corresponding glucosinolates (GLs), mainly found in Brassica vegetables (Brassicaceae) and, to a lesser extent, in Moringaceae plants, have demonstrated to exert neuroprotective properties. Specifically, strong evidences suggest that antioxidant effects may be ascribed mainly to their peculiar ability to activate the Nrf2/ARE pathway, but alternative mechanisms of action have also been suggested. This review summarizes the current knowledge about the neuroprotective effects of ITCs in counteracting oxidative stress as well as inflammatory and apoptotic mechanisms, using in vitro and in vivo models of acute and chronic neurodegenerative disease. Therefore, ITCs could be regarded as a promising source of alternative medicine for the prevention and/or treatment of neurodegenerative diseases.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.