A complex network approach is combined with time dynamics in order to conduct a space-time analysis applicable to longitudinal studies aimed to characterize the progression of Alzheimer's disease (AD) in individual patients. The network analysis reveals how patient-specific patterns are associated with disease progression, also capturing the widespread effect of local disruptions. This longitudinal study is carried out on resting electroence phalography (EEGs) of seven AD patients. The test is repeated after a three months' period. The proposed methodology allows to extract some averaged information and regularities on the patients' cohort and to quantify concisely the disease evolution. From the functional viewpoint, the progression of AD is shown to be characterized by a loss of connected areas here measured in terms of network parameters (characteristic path length, clustering coefficient, global efficiency, degree of connectivity and connectivity density). The differences found between baseline and at follow-up are statistically significant. Finally, an original topographic multiscale approach is proposed that yields additional results.

A longitudinal EEG study of Alzheimer's disease progression based on a complex network approach

MORABITO, Giuseppe;BONANNO, LILLA;BRAMANTI, ALESSIA;DE SALVO, SIMONA;BRAMANTI, Placido
2015-01-01

Abstract

A complex network approach is combined with time dynamics in order to conduct a space-time analysis applicable to longitudinal studies aimed to characterize the progression of Alzheimer's disease (AD) in individual patients. The network analysis reveals how patient-specific patterns are associated with disease progression, also capturing the widespread effect of local disruptions. This longitudinal study is carried out on resting electroence phalography (EEGs) of seven AD patients. The test is repeated after a three months' period. The proposed methodology allows to extract some averaged information and regularities on the patients' cohort and to quantify concisely the disease evolution. From the functional viewpoint, the progression of AD is shown to be characterized by a loss of connected areas here measured in terms of network parameters (characteristic path length, clustering coefficient, global efficiency, degree of connectivity and connectivity density). The differences found between baseline and at follow-up are statistically significant. Finally, an original topographic multiscale approach is proposed that yields additional results.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3066604
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 95
social impact