We report on the results of noise measurements in p-type organic thin-film transistors (TFTs) extending from the subthreshold region into the strong accumulation region over four decades of drain current values. The low-frequency noise produced by the devices can be successfully interpreted in the context of a multitrap correlated number fluctuation - mobility fluctuation (CMF) theory, while neither phonon-induced mobility fluctuation nor carrier number fluctuation mechanisms are capable of justifying the observed noise behavior. The Coulomb scattering parameter is found to be in the order of 107 Vs/C, about three orders of magnitude larger with respect to crystalline silicon MOSFETs and comparable with what already reported in hydrogenated amorphous silicon TFTs, suggesting a much more relevant contribution coming from CMF in disordered materials.
Evidence of Correlated Mobility Fluctuations in p-Type Organic Thin-Film Transistors
GIUSI, Gino
Primo
;GIORDANO, ORAZIOSecondo
;SCANDURRA, Graziella;CIOFI, CarmineUltimo
2015-01-01
Abstract
We report on the results of noise measurements in p-type organic thin-film transistors (TFTs) extending from the subthreshold region into the strong accumulation region over four decades of drain current values. The low-frequency noise produced by the devices can be successfully interpreted in the context of a multitrap correlated number fluctuation - mobility fluctuation (CMF) theory, while neither phonon-induced mobility fluctuation nor carrier number fluctuation mechanisms are capable of justifying the observed noise behavior. The Coulomb scattering parameter is found to be in the order of 107 Vs/C, about three orders of magnitude larger with respect to crystalline silicon MOSFETs and comparable with what already reported in hydrogenated amorphous silicon TFTs, suggesting a much more relevant contribution coming from CMF in disordered materials.File | Dimensione | Formato | |
---|---|---|---|
Evidence_2015.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.