Given a nonempty set Y subset of R-n. Rn and a function f : [a, b] x R-n x R-n xY -> R, we are interested in the problem of finding u. W-2,W-p([a, b], R-n) such that {f(t, u(t), u'(t), u"(t)) = 0 for a.e.t. [a, b], u(a) = u(b) = 0(Rn). We prove an existence result where, for any fixed (t, y) is an element of [a, b] x Y, the function f (t, center dot, center dot, y) can be discontinuous even at all points (x, z) is an element of R-n x R-n. The function f (t, x, z, center dot) is only assumed to be continuous and locally nonconstant. We also show how the same approach can be applied to the implicit integral equation f(t, integral(b)(a) g(t, z)u(z) dz, u(t))=0. We prove an existence result (with f (t, x, y) discontinuous in x and continuous and locally nonconstant in y) which extends and improves in several directions some recent results in the field.

On the two-point problem for implicit second-order ordinary differential equations

CUBIOTTI, Paolo;
2015

Abstract

Given a nonempty set Y subset of R-n. Rn and a function f : [a, b] x R-n x R-n xY -> R, we are interested in the problem of finding u. W-2,W-p([a, b], R-n) such that {f(t, u(t), u'(t), u"(t)) = 0 for a.e.t. [a, b], u(a) = u(b) = 0(Rn). We prove an existence result where, for any fixed (t, y) is an element of [a, b] x Y, the function f (t, center dot, center dot, y) can be discontinuous even at all points (x, z) is an element of R-n x R-n. The function f (t, x, z, center dot) is only assumed to be continuous and locally nonconstant. We also show how the same approach can be applied to the implicit integral equation f(t, integral(b)(a) g(t, z)u(z) dz, u(t))=0. We prove an existence result (with f (t, x, y) discontinuous in x and continuous and locally nonconstant in y) which extends and improves in several directions some recent results in the field.
File in questo prodotto:
File Dimensione Formato  
3070165.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3070165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact