We propose a simple theoretical model for desertification processes based on three actors (soil, seeds, and plants) on a two-dimensional lattice. Each actor is described by a time dependent fermionic operator, and the dynamics is ruled by a self-adjoint Hamilton-like operator. We show that even taking into account only a few parameters, accounting for external actions on the ecosystem or the response to positive feedbacks, the model provides a plausible description of the desertification process, and can be adapted to different ecological landscapes. We first describe the simplified model in one cell. Then, we define the full model on a two-dimensional region, taking into account additional factors such as nonhomogeneities, the competition for resources between plants, and the spread of seeds due to the action of wind or animals. This allows us to explore the effects of positive feedback on slowing down, stopping, or reversing the desertification process.

An Operatorial Description of Desertification

OLIVERI, Francesco
2016

Abstract

We propose a simple theoretical model for desertification processes based on three actors (soil, seeds, and plants) on a two-dimensional lattice. Each actor is described by a time dependent fermionic operator, and the dynamics is ruled by a self-adjoint Hamilton-like operator. We show that even taking into account only a few parameters, accounting for external actions on the ecosystem or the response to positive feedbacks, the model provides a plausible description of the desertification process, and can be adapted to different ecological landscapes. We first describe the simplified model in one cell. Then, we define the full model on a two-dimensional region, taking into account additional factors such as nonhomogeneities, the competition for resources between plants, and the spread of seeds due to the action of wind or animals. This allows us to explore the effects of positive feedback on slowing down, stopping, or reversing the desertification process.
File in questo prodotto:
File Dimensione Formato  
2016_BCO_Desertification.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3077467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact