The aim of this experimental study is to evaluate, in vitro, the chemical composition and the micromorphological structure of a bone substitute material surface. This material is based on calcium triphosphate and hydroxyapatite microgranules. Some results of a preliminary surface study of the above mentioned bioceramic materials are reported. The study has been carried out by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS), complemented by X-ray photoelectron spectrometry (XPS) measurements. Whereas XPS data supplies the average surface composition of the system, TOF-SIMS supplies laterally and depth resolved information on the sample. This preliminary study confirms the properties of osteoconduction and scaffold features of the material. Moreover, a possible osteoinductive capability could be due to the presence of surface micropores, which could help in the attraction of bone morphogenetic protein (BMP), thus promoting the osteogenesis. © 2016 Springer Science+Business Media New York.
TOF-SIMS application for evaluating the atomic structure of new bone substitute material
OTERI, GiacomoPrimo
;CICCIU', Marco
Ultimo
2016-01-01
Abstract
The aim of this experimental study is to evaluate, in vitro, the chemical composition and the micromorphological structure of a bone substitute material surface. This material is based on calcium triphosphate and hydroxyapatite microgranules. Some results of a preliminary surface study of the above mentioned bioceramic materials are reported. The study has been carried out by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS), complemented by X-ray photoelectron spectrometry (XPS) measurements. Whereas XPS data supplies the average surface composition of the system, TOF-SIMS supplies laterally and depth resolved information on the sample. This preliminary study confirms the properties of osteoconduction and scaffold features of the material. Moreover, a possible osteoinductive capability could be due to the presence of surface micropores, which could help in the attraction of bone morphogenetic protein (BMP), thus promoting the osteogenesis. © 2016 Springer Science+Business Media New York.File | Dimensione | Formato | |
---|---|---|---|
27.pdf
accesso aperto
Descrizione: Post-print - versione accettata dell'Autore
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
613.32 kB
Formato
Adobe PDF
|
613.32 kB | Adobe PDF | Visualizza/Apri |
Oteri-2016-Tof-sims-application-for-evaluating.pdf
solo utenti autorizzati
Descrizione: Articolo principale - Edizione a stampa
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
705.77 kB
Formato
Adobe PDF
|
705.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.