In this paper a p-system with relaxation is considered. Within the theoretical framework of the differential constraints method, we determine two possible classes of exact solutions of the governing model both parameterized by one arbitrary function. This allows to solve classes of initial value problems of interest in nonlinear wave propagation. In fact a generalized Riemann problem is solved by determining a smooth solution which plays the role of the well known rarefaction wave of the homogeneous case

Generalized Riemann problems and exact solutions for p-systems with relaxation

CURRO', Carmela;MANGANARO, Natale
2016

Abstract

In this paper a p-system with relaxation is considered. Within the theoretical framework of the differential constraints method, we determine two possible classes of exact solutions of the governing model both parameterized by one arbitrary function. This allows to solve classes of initial value problems of interest in nonlinear wave propagation. In fact a generalized Riemann problem is solved by determining a smooth solution which plays the role of the well known rarefaction wave of the homogeneous case
File in questo prodotto:
File Dimensione Formato  
Curro_Manganaro_Ricerche.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 631.58 kB
Formato Adobe PDF
631.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
3090940.pdf

solo utenti autorizzati

Descrizione: ARTICOLO PRINCIPALE
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.91 MB
Formato Adobe PDF
5.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3090940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact