It is proved a theorem providing necessary and sufficient conditions enabling one to map a nonlinear system of first order partial differential equations, polynomial in the derivatives, to an equivalent autonomous first order system polynomially homogeneous in the derivatives. The result is intimately related to the symmetry properties of the source system, and the proof, involving the use of the canonical variables associated to the admitted Lie point symmetries, is constructive. First order Monge–Ampère systems, either with constant coefficients or with coefficients depending on the field variables, where the theorem can be successfully applied, are considered.

Nonlinear first order PDEs reducible to autonomous form polynomially homogeneous in the derivatives

Gorgone, Matteo;OLIVERI, Francesco
2017-01-01

Abstract

It is proved a theorem providing necessary and sufficient conditions enabling one to map a nonlinear system of first order partial differential equations, polynomial in the derivatives, to an equivalent autonomous first order system polynomially homogeneous in the derivatives. The result is intimately related to the symmetry properties of the source system, and the proof, involving the use of the canonical variables associated to the admitted Lie point symmetries, is constructive. First order Monge–Ampère systems, either with constant coefficients or with coefficients depending on the field variables, where the theorem can be successfully applied, are considered.
2017
File in questo prodotto:
File Dimensione Formato  
2016_Gorgone_Oliveri_JGP.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 423.81 kB
Formato Adobe PDF
423.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
3091025.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 427.64 kB
Formato Adobe PDF
427.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3091025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact