Lymph node (LN) fine-needle cytology (FNC) coupled with flow cytometry immunophenotyping provides relevant information for the diagnosis of non-Hodgkin lymphoma (NHL). Numerous studies have shown FNC samples to be suitable for different molecular procedures; in this review, some of the molecular procedures most commonly employed for NHL are briefly described and evaluated in this perspective. Fluorescence in situ hybridization and chromogenic in situ hybridization are briefly described. Polymerase chain reaction (PCR)-based assays are used to identify and quantify mutations and translocations, namely immunoglobulin (IGH) and T-cell receptor rearrangements by clonality testing and IGVH somatic hypermutations either by Sanger sequencing, single-strand conformational polymorphisms or RT-PCR strategies. High-throughput technologies (HTT) encompass numerous and different diagnostic tools that share the capacity of multiple molecular investigation and sample processing in a fast and reproducible manner. HTT includes gene expression profiling, comparative genomic hybridization, single-nucleotide polymorphism arrays and next-generation sequencing technologies. A brief description of these tools and their potential application to LN FNC is reported. The challenge for FNC will be to achieve new knowledge and apply new technologies to FNC, exploiting its own basic qualities.

Lymph Node Fine-Needle Cytology: Beyond Flow Cytometry

IENI, ANTONIO;
2016-01-01

Abstract

Lymph node (LN) fine-needle cytology (FNC) coupled with flow cytometry immunophenotyping provides relevant information for the diagnosis of non-Hodgkin lymphoma (NHL). Numerous studies have shown FNC samples to be suitable for different molecular procedures; in this review, some of the molecular procedures most commonly employed for NHL are briefly described and evaluated in this perspective. Fluorescence in situ hybridization and chromogenic in situ hybridization are briefly described. Polymerase chain reaction (PCR)-based assays are used to identify and quantify mutations and translocations, namely immunoglobulin (IGH) and T-cell receptor rearrangements by clonality testing and IGVH somatic hypermutations either by Sanger sequencing, single-strand conformational polymorphisms or RT-PCR strategies. High-throughput technologies (HTT) encompass numerous and different diagnostic tools that share the capacity of multiple molecular investigation and sample processing in a fast and reproducible manner. HTT includes gene expression profiling, comparative genomic hybridization, single-nucleotide polymorphism arrays and next-generation sequencing technologies. A brief description of these tools and their potential application to LN FNC is reported. The challenge for FNC will be to achieve new knowledge and apply new technologies to FNC, exploiting its own basic qualities.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3091940
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact