We study by Monte Carlo simulation the coating process of colloidal dimers onto spherical nanoparticles. To this end we investigate a simplified mixture of hard spheres (the guest particles) and hard dimers formed by two tangent spheres of different sizes (the encapsulating agents) in an implicit-solvent representation; in our scheme, the range of effective interactions between the smaller particle in a dimer and a guest sphere depends on their relative size. By tuning the size and concentration of guests, under overall dilute conditions a rich phase behavior emerges: for small sizes and/or low concentrations, the preferred arrangement is compact aggregates (capsules) of variable sizes, where one or few guest particles are coated with dimers; for larger sizes and moderate guest concentrations, other scenarios are realized, including equilibrium separation between a guest-rich and a guest-poor phase. Our results serve as a framework for a more systematic investigation of self-assembled structures of functionalized dimers capable of encapsulating target particles, like for instance bioactive substances in a colloidal dispersion.
Encapsulation of spherical nanoparticles by colloidal dimers
MUNAO', GIANMARCO
Primo
;COSTA, DinoSecondo
;PRESTIPINO GIARRITTA, SantiPenultimo
;CACCAMO, CarloUltimo
2016-01-01
Abstract
We study by Monte Carlo simulation the coating process of colloidal dimers onto spherical nanoparticles. To this end we investigate a simplified mixture of hard spheres (the guest particles) and hard dimers formed by two tangent spheres of different sizes (the encapsulating agents) in an implicit-solvent representation; in our scheme, the range of effective interactions between the smaller particle in a dimer and a guest sphere depends on their relative size. By tuning the size and concentration of guests, under overall dilute conditions a rich phase behavior emerges: for small sizes and/or low concentrations, the preferred arrangement is compact aggregates (capsules) of variable sizes, where one or few guest particles are coated with dimers; for larger sizes and moderate guest concentrations, other scenarios are realized, including equilibrium separation between a guest-rich and a guest-poor phase. Our results serve as a framework for a more systematic investigation of self-assembled structures of functionalized dimers capable of encapsulating target particles, like for instance bioactive substances in a colloidal dispersion.File | Dimensione | Formato | |
---|---|---|---|
PCCP_18_24922_2016.pdf
solo gestori archivio
Descrizione: postprint
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.