Let Ω be a bounded domain in RN with smooth boundary. Let f: [0, + ∞[ → [0,+∞[, with f(0) = 0, be a continuous function such that, for some a > 0, the function ξ∈]0, +∞[ → ξ−2 · ∫0ξ f(t)dt is non increasing in ]0,a[. Finally, let α: Ω → [0,+∞[ be a continuous function with α(x) > 0, for all x ∈ Ω. We establish a necessary and sufficient condition for the existence of solutions to the following problem −Δu = λα(x)f(u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, where λ is a positive parameter. Our result extends to higher dimension a similar characterization very recently established by Ricceri in the one dimensional case.

A characterization related to the dirichlet problem for an elliptic equation

ANELLO, Giovanni
2016-01-01

Abstract

Let Ω be a bounded domain in RN with smooth boundary. Let f: [0, + ∞[ → [0,+∞[, with f(0) = 0, be a continuous function such that, for some a > 0, the function ξ∈]0, +∞[ → ξ−2 · ∫0ξ f(t)dt is non increasing in ]0,a[. Finally, let α: Ω → [0,+∞[ be a continuous function with α(x) > 0, for all x ∈ Ω. We establish a necessary and sufficient condition for the existence of solutions to the following problem −Δu = λα(x)f(u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, where λ is a positive parameter. Our result extends to higher dimension a similar characterization very recently established by Ricceri in the one dimensional case.
2016
File in questo prodotto:
File Dimensione Formato  
funkc ekv 2016.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 94.23 kB
Formato Adobe PDF
94.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3096911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact