The wide spreading of smart devices drives to develop distributed applications of increasing complexity, attracting efforts from both research and business communities. Recently, a new volunteer contribution paradigm based on participatory and opportunistic sensing is affirming in the Internet of Things scenario: Mobile Crowdsensing (MCS). A typical MCS application considers smart devices as contributing sensors able to produce geolocalized data about the physical environment, then collected by a remote application server for processing. The growing interest on MCS allows to think about its possible exploitation in commercial context. This calls for adequate methods able to support MCS service providers in design choices, implementing mechanisms for the quality of service (QoS) assessment while dealing with complex time-dependent phenomena and churning issues due to contributors that unpredictably join and leave the MCS system. In this paper, we propose an analytical modeling framework based on stochastic Petri nets to evaluate QoS metrics of a class of MCS services. This method requires to extend the Petri net formalism by specifying a marking dependency semantics for non-exponentially distributed transitions. The approach is then applied to an MCS application example deriving some QoS measures that can drive quantitative evaluation and characterization of the "crowd" behavior.

QoS Assessment of Mobile Crowdsensing Services

DISTEFANO, SALVATORE;LONGO, FRANCESCO;SCARPA, Marco Lucio
2015

Abstract

The wide spreading of smart devices drives to develop distributed applications of increasing complexity, attracting efforts from both research and business communities. Recently, a new volunteer contribution paradigm based on participatory and opportunistic sensing is affirming in the Internet of Things scenario: Mobile Crowdsensing (MCS). A typical MCS application considers smart devices as contributing sensors able to produce geolocalized data about the physical environment, then collected by a remote application server for processing. The growing interest on MCS allows to think about its possible exploitation in commercial context. This calls for adequate methods able to support MCS service providers in design choices, implementing mechanisms for the quality of service (QoS) assessment while dealing with complex time-dependent phenomena and churning issues due to contributors that unpredictably join and leave the MCS system. In this paper, we propose an analytical modeling framework based on stochastic Petri nets to evaluate QoS metrics of a class of MCS services. This method requires to extend the Petri net formalism by specifying a marking dependency semantics for non-exponentially distributed transitions. The approach is then applied to an MCS application example deriving some QoS measures that can drive quantitative evaluation and characterization of the "crowd" behavior.
File in questo prodotto:
File Dimensione Formato  
J19 - jgc2015.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/3099407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact