It is well known the role of oxidative stress in the pathophysiology of Alzheimer's disease (AD) and of other neurodegenerative pathologies. We have previously documented that Amyloid beta peptide (1-42) (Abeta) dependent-oxidative modifications affect red blood cell (RBC) morphology and function. Experimental studies show that caffeine (CF) consumption is inversely correlated with AD. In this study, we investigated the role played by RBC in the protective mechanism elicited by CF against Abeta mediated toxicity. PS exposure levels by FACS analysis, as well as protein band 3 functionality analysis, indicated that CF at 100 mu M protected against Abeta-mediated membrane alterations, which are known to occur in AD. Moreover, CF counteracts inhibition of ATP release from RBC by Abeta, restoring its ability to modulate vasodilation. Concurrently, analysis of protein kinase C (PKC) and caspase 3 activities, responsible for cytoskeleton alterations, revealed that unlike to caspase 3, PKC alpha activation induced by Abeta was fully abolished by CF through a mechanism involving Acetylcholinesterase (AChE), located on external face of RBC plasma membrane. These results provide support for the hypothesis concerning the protective role of CF in AD patients could include also a peripheral mechanism involving RBC. (C) 2015 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved. mediated toxicity. PS exposure levels by FACS analysis, as well as protein band 3 functionality analysis, indicated that CF at 100 mM protected against Abeta-mediated membrane alterations, which are known to occur in AD. Moreover, CF counteracts inhibition of ATP release from RBC by Abeta, restoring its ability to modulate vasodilation. Concurrently, analysis of protein kinase C (PKC) and caspase 3 activities, responsible for cytoskeleton alterations, revealed that unlike to caspase 3, PKCa activation induced by Abeta was fully abolished by CF through a mechanism involving Acetylcholinesterase (AChE), located on external face of RBC plasma membrane. These results provide support for the hypothesis concerning the protective role of CF in AD patients could include also a peripheral mechanism involving RBC.

Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against b-amyloid-induced alterations in red blood cells

FICARRA, Silvana
Co-primo
;
BARRECA, Davide;GALTIERI, Antonio;TELLONE, Ester
Ultimo
2016-01-01

Abstract

It is well known the role of oxidative stress in the pathophysiology of Alzheimer's disease (AD) and of other neurodegenerative pathologies. We have previously documented that Amyloid beta peptide (1-42) (Abeta) dependent-oxidative modifications affect red blood cell (RBC) morphology and function. Experimental studies show that caffeine (CF) consumption is inversely correlated with AD. In this study, we investigated the role played by RBC in the protective mechanism elicited by CF against Abeta mediated toxicity. PS exposure levels by FACS analysis, as well as protein band 3 functionality analysis, indicated that CF at 100 mu M protected against Abeta-mediated membrane alterations, which are known to occur in AD. Moreover, CF counteracts inhibition of ATP release from RBC by Abeta, restoring its ability to modulate vasodilation. Concurrently, analysis of protein kinase C (PKC) and caspase 3 activities, responsible for cytoskeleton alterations, revealed that unlike to caspase 3, PKC alpha activation induced by Abeta was fully abolished by CF through a mechanism involving Acetylcholinesterase (AChE), located on external face of RBC plasma membrane. These results provide support for the hypothesis concerning the protective role of CF in AD patients could include also a peripheral mechanism involving RBC. (C) 2015 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved. mediated toxicity. PS exposure levels by FACS analysis, as well as protein band 3 functionality analysis, indicated that CF at 100 mM protected against Abeta-mediated membrane alterations, which are known to occur in AD. Moreover, CF counteracts inhibition of ATP release from RBC by Abeta, restoring its ability to modulate vasodilation. Concurrently, analysis of protein kinase C (PKC) and caspase 3 activities, responsible for cytoskeleton alterations, revealed that unlike to caspase 3, PKCa activation induced by Abeta was fully abolished by CF through a mechanism involving Acetylcholinesterase (AChE), located on external face of RBC plasma membrane. These results provide support for the hypothesis concerning the protective role of CF in AD patients could include also a peripheral mechanism involving RBC.
2016
File in questo prodotto:
File Dimensione Formato  
CF-acetylcholinesterase Biochemie2016.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3100261
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact