Self-standing and flexible paper-like electrodes consisting of nano-sized Co3O4 nanoparticles encapsulated in nitrogen-doped graphite-like carbon fibers are synthesized by electrospinning followed by thermal treatment. Several studies have recently reported that encapsulating nano-sized metal oxides that display conversion reaction, such as manganese, iron and cobalt oxides, within the three-dimensional network of electrospun carbon fibers allows to remarkably improve the performances of lithium-ion batteries. In the present work, we challenge these reports with a study based on the optimization of the preparation and post-synthesis treatment parameters, and a very precise characterization of the structural, morphological and chemical properties of the composite materials leading to clear structure-electrochemical properties correlations. In particular, it is found that the electrochemical properties of a physical mixture of cobalt oxide nanoparticles and electrospun carbon nanofibers are equivalent to the ones of the electrospun nanocomposites, proving that the benefit of electrospun metal oxide-carbon nanocomposites is limited and that the “enhanced properties” claimed in the literature arise from imprudent comparisons.

Are electrospun carbon/metal oxide composite fibers relevant electrode materials for Li-ion batteries?

FAZIO, Enza;PATANE', Salvatore;NERI, Fortunato;
2016

Abstract

Self-standing and flexible paper-like electrodes consisting of nano-sized Co3O4 nanoparticles encapsulated in nitrogen-doped graphite-like carbon fibers are synthesized by electrospinning followed by thermal treatment. Several studies have recently reported that encapsulating nano-sized metal oxides that display conversion reaction, such as manganese, iron and cobalt oxides, within the three-dimensional network of electrospun carbon fibers allows to remarkably improve the performances of lithium-ion batteries. In the present work, we challenge these reports with a study based on the optimization of the preparation and post-synthesis treatment parameters, and a very precise characterization of the structural, morphological and chemical properties of the composite materials leading to clear structure-electrochemical properties correlations. In particular, it is found that the electrochemical properties of a physical mixture of cobalt oxide nanoparticles and electrospun carbon nanofibers are equivalent to the ones of the electrospun nanocomposites, proving that the benefit of electrospun metal oxide-carbon nanocomposites is limited and that the “enhanced properties” claimed in the literature arise from imprudent comparisons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3101408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact