In this paper we present a Bayesian framework for interpolating data in a reproducing kernel Hilbert space associated with a random subdivision scheme, where not only approximations of the values of a function at some missing points can be obtained, but also uncertainty estimates for such predicted values. This random scheme generalizes the usual subdivision by taking into account, at each level, some uncertainty given in terms of suitably scaled noise sequences of i.i.d. Gaussian random variables with zero mean and given variance, and generating, in the limit, a Gaussian process whose correlation structure is characterized and used for computing realizations of the conditional posterior distribution. The hierarchical nature of the procedure may be exploited to reduce the computational cost compared to standard techniques in the case where many prediction points need to be considered. (C) 2016 Elsevier B.V. All rights reserved.

Interpolation in reproducing kernel Hilbert spaces based on random subdivision schemes

DI SALVO, ROSA
Secondo
;
PUCCIO, Luigia
Ultimo
2017-01-01

Abstract

In this paper we present a Bayesian framework for interpolating data in a reproducing kernel Hilbert space associated with a random subdivision scheme, where not only approximations of the values of a function at some missing points can be obtained, but also uncertainty estimates for such predicted values. This random scheme generalizes the usual subdivision by taking into account, at each level, some uncertainty given in terms of suitably scaled noise sequences of i.i.d. Gaussian random variables with zero mean and given variance, and generating, in the limit, a Gaussian process whose correlation structure is characterized and used for computing realizations of the conditional posterior distribution. The hierarchical nature of the procedure may be exploited to reduce the computational cost compared to standard techniques in the case where many prediction points need to be considered. (C) 2016 Elsevier B.V. All rights reserved.
2017
File in questo prodotto:
File Dimensione Formato  
3103219.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3103219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact